首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show that mice lacking Suz12, like Ezh2 and Eed mutant mice, are not viable and die during early postimplantation stages displaying severe developmental and proliferative defects. Consistent with this, we demonstrate that SUZ12 is required for proliferation of cells in tissue culture. Furthermore, we demonstrate that SUZ12 is essential for the activity and stability of the PRC2/3 complexes in mouse embryos, in tissue culture cells and in vitro. Strikingly, Suz12-deficient embryos show a specific loss of di- and trimethylated H3K27, demonstrating that Suz12 is indeed essential for EZH2 activity in vivo. In conclusion, our data demonstrate an essential role of SUZ12 in regulating the activity of the PRC2/3 complexes, which are required for regulating proliferation and embryogenesis.  相似文献   

4.
5.
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.  相似文献   

6.
Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.  相似文献   

7.
8.
ObjectivesBesides its role in regulating phosphatidylinositol‐3 kinase (PI3K) signalling in the cytosol, PTEN also has a nuclear function. In this study, we attempted to understand the mechanism of chromatin PTEN in suppressing chromosomal instability during cell division.Materials and methodsImmunocoprecipitation, ectopic expression, and deletional analyses were used to identify the physical interaction between Chromobox Homolog protein 8 (CBX8) and PTEN, as well as the functional domain(s) of PTEN mediating the interaction. Cell synchronization followed by immunoblotting was employed to study cell cycle regulation of CBX8 and the functional interaction between chromatin PTEN and CBX8. Small interfering RNAs (siRNAs) were used to study the role of PTEN and CBX8 in modulating histone epigenetic markers during the cell cycle.ResultsPolycomb group (PcG) proteins including CBXs function to repress gene expression in a wide range of organisms including mammals. We recently showed that PTEN interacted with CBX8, a component of Polycomb Repressing Complex 1 (PRC1), and that CBX8 co‐localized with PTEN in the nucleus. CBX8 levels were high, coinciding with its phosphorylation in mitosis. Phosphorylation of CBX8 was associated with monoubiquitinated PTEN and phosphorylated‐BubR1 on chromatin. Moreover, CBX8 played an important role in cell proliferation and mitotic progression. Significantly, downregulation of either PTEN or CBX8 induced H3K27Me3 epigenetic marker in mitotic cells.ConclusionCBX8 is a new component that physically interacts with chromatin PTEN, playing an important role in regulating mitotic progression.  相似文献   

9.
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.  相似文献   

10.
11.
Polycomb group (PcG) proteins form essential epigenetic memory systems for controlling gene expression during development in plants and animals. However, the mechanism of plant PcG protein functions remains poorly understood. Here, we probed the composition and function of plant Polycomb repressive complex 2 (PRC2). This work established the fact that all known plant PRC2 complexes contain MSI1, a homologue of Drosophila p55. While p55 is not essential for the in vitro enzymatic activity of PRC2, plant MSI1 was required for the functions of the EMBRYONIC FLOWER and the VERNALIZATION PRC2 complexes including trimethylation of histone H3 Lys27 (H3K27) at the target chromatin, as well as gene repression and establishment of competence to flower. We found that MSI1 serves to link PRC2 to LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), a protein that binds H3K27me3 in vitro and in vivo and is required for a functional plant PcG system. The LHP1–MSI1 interaction forms a positive feedback loop to recruit PRC2 to chromatin that carries H3K27me3. Consequently, this can provide a mechanism for the faithful inheritance of local epigenetic information through replication.  相似文献   

12.
13.
14.
The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.  相似文献   

15.
16.
17.
PcG蛋白主要以PRC1和PRC2两组复合物的形式存在,通过参与核小体组蛋白翻译后修饰等机制,发挥调控靶基因转录的功能. PRC1复合体中的RING1A/B具有使组蛋白H2AK119泛素化的活性;PRC2中的EZH2具有使组蛋白H3K27三甲基化的活性,形成PRC1锚定到核小体上的位点. PcG蛋白的表达特征具有发育阶段和细胞类型时空特异性. 长链非编码RNA等反式作用因子能募集PcG蛋白结合于靶基因,发挥靶向作用. 本文就PcG蛋白功能、构成的时空特异性、募集机制及其与疾病发生的关系研究进展做一综述.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号