首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The relationship between viral DNA and protein synthesis during herpes simplex virus type 1 (HSV-1) replication in HeLa cells was examined. Treatment of infected cells with cytosine arabinoside (ara-C), which inhibited the synthesis of HSV-1 DNA beyond the level of detection, markedly affected the types and amounts of viral proteins made in the infected cell. Although early HSV-1 proteins were synthesized normally, there was a rapid decline in total viral protein synthesis beginning 3 to 4 h after infection. This is the time that viral DNA synthesis would normally have been initiated. ara-C also prevented the normal shift from early to late viral protein synthesis. Finally, it was shown that the effect of ara-C on late protein synthesis was dependent upon the time after infection that the drug was added. These results suggest that inhibition of progeny viral DNA synthesis by ara-C prevents the "turning on" of late HSV-1 protein synthesis but allows early translation to be "switched off."  相似文献   

9.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsB- and tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsJ-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.  相似文献   

10.
11.
Herpex simplex virus 1 (HSV-1) RNA labeled with with [methyl-3H] methionine at various times during the infectious cycle and purified by hybridization to viral DNA was analyzed for the presence of methylated nucleotides. The data indicate the following. (i) RNA labeled from 0 to 14 h postinfection and accumulating in the cytoplasm contained internal base-methylated nucleotides and terminal oligonucleotides consistent with the structure 7mG(5')ppp-(5')XmpYmpNp. Similar methylated nucleotides and oligonucleotides were also found in viral RNA accumulating in the cytoplasm of cells treated with cycloheximide from the time of infection. Previous studies (M. Kozak and B. Roizman, 1974) have shown that, whereas the RNA accumulating in the 14-h infected cells contains all of the sequences functioning as mRNA throughout infection, the RNA accumulating in the cytoplasm of cycloheximide-treated cells is associated with polyribosomes synthesizing the earliest (alpha) group of polypeptides specified by the virus. (ii) Cytoplasmic viral RNA from cells labeled 11 to 14 h postinfection as well as the total adenylated RNA in the cytoplasm and polyribosomes labeled in the same fashion contained the terminal oligonucleotide but not the internal base-methylated nucleotide.  相似文献   

12.
This study was undertaken to determine if direct cytotoxicity (DC) against herpes simplex virus infected cells, perhaps mediated by T cells, could be demonstrated in individuals subject to recurrent herpes labialis. The mononuclear cells from 7 out of 17 individuals with recurrent herpes expressed DC whereas no DC was ever exhibited by 7 individuals without a previous history of herpes infections. Several approaches were used to show that the cytotoxicity being detected was predominately of the direct type rather than antibody-dependent cell cytotoxicity (ADCC). Since the effector cells of the DC were sensitive to trypsin treatment and behaved as do natural killer (NK) cells upon cell fractionation, the results were taken to imply that the DC was attributable to a NK-effector cell type rather than a classical T lymphocyte.  相似文献   

13.
HEp-2 cells were infected with herpes simplex virus type 1 and labeled with [3H]thymidine and 14C-amino acids. Infected cells or nuclei prepared from them were extracted with Triton X-100 and NaCl, utilizing a method recently described, and the low-speed supernatant (extract) was partially purified by sedimentation on sucrose gradients. A nucleoprotein complex which sedimented as a wide peak around 200S was identified. The nucleoprotein complex contained viral DNA, which banded at the expected density in CsCl isopycnic gradients and was intact after measurements taken on electron microscopic photographic enlargements. The autoradiographic pattern of 14C-labeled proteins after electrophoresis showed that only a few of the virus-specific polypeptides were present in the nucleoprotein complexes, in particular, VP5, VP12, VP15.2, VP19, and VP24. Cellular histones were absent. The extracts and the nucleoprotein complexes were centrifuged to equilibrium in metrizamide density gradients without prefixation. Electron microscopic direct visualization of the nucleoprotein complexes after sucrose or metrizamide purification revealed that the proteins were preferentially associated with one end of the DNA molecule and formed large irregular terminal thickenings or capsid-like transparent shells enclosing polyglobular cores. No nucleosomes were observed on herpes simplex virus nucleoprotein complexes. The same type of complex was detected after phosphonoacetic acid addition, and grossly altered nucleocapsids were formed.  相似文献   

14.
Chromatin isolated from herpes simplex virus type 1-infected baby hamster kidney cells contains a number of tightly associated virus-induced polypeptides. A subset of these proteins bind to immobilized DNA in vitro (Vmw 175, 155, 130, 63, 43, 38/39). Virus-induced polypeptides extractable with acid from infected cell chromatin include Vmw 155, the major capsid protein of herpes simplex virus type 1 virions, and Vmw 63 and 38/39 which are heterogeneous with respect to charge and are phosphorylated. These chromatin preparations, in the presence of deoxynucleoside triphosphates and MgCl2 were capable of synthesizing viral and cell DNA in a reaction which was stimulated by the addition of ATP, riboNTPs and potassium acetate. In vitro synthesized viral DNA co-sedimented with prelabelled parental DNA but the single-stranded product was smaller than parental DNA. Density labelling indicated that extensive synthesis was taking place and all BamHI fragments of viral DNA were represented by the DNA synthesized in vitro.  相似文献   

15.
16.
17.
18.
Interaction of concanavalin A with herpes simplex virus infected cells   总被引:1,自引:0,他引:1  
Incubation of herpes simplex virus (HSV) infected cells with concanavalin A (Con A) interferes with binding of the Fc portion of antibody. In addition, the lectin inhibits complement mediated cytolysis, probably by interference with antibody binding. These results suggest that binding sites of both Fc and HSV antibody contain residues which attract Con A.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) capsid proteins assemble in vitro into spherical procapsids that differ markedly in structure and stability from mature polyhedral capsids but can be converted to the mature form. Circumstantial evidence suggests that assembly in vivo follows a similar pathway of procapsid assembly and maturation, a pathway that resembles those of double-stranded DNA bacteriophages. We have confirmed the above pathway by isolating procapsids from HSV-1-infected cells and characterizing their morphology, thermal sensitivity, and protein composition. Experiments were carried out with an HSV-1 mutant (m100) deficient in the maturational protease for which it was expected that procapsids-normally, short-lived intermediates-would accumulate in infected cells. Particles isolated from m100-infected cells were found to share the defining properties of procapsids assembled in vitro. For example, by electron microscopy, they were found to be spherical rather than polyhedral in shape, and they disassembled at 0 degrees C, unlike mature capsids, which are stable at this temperature. A three-dimensional reconstruction computed at 18-A resolution from cryoelectron micrographs showed m100 procapsids to be structurally indistinguishable from procapsids assembled in vitro. In both cases, their predominant components are the four essential capsid proteins: the major capsid protein (VP5), the scaffolding protein (pre-VP22a), and the triplex proteins (VP19C and VP23). VP26, a small, abundant but dispensable capsid protein, was not found associated with m100 procapsids, suggesting that it binds to capsids only after they have matured into the polyhedral form. Procapsids were also isolated from cells infected at the nonpermissive temperature with the HSV-1 mutant tsProt.A (a mutant with a thermoreversible lesion in the protease), and their identity as procapsids was confirmed by cryoelectron microscopy. This analysis revealed density on the inner surface of the procapsid scaffolding core that may correspond to the location of the maturational protease. Upon incubation at the permissive temperature, tsProt.A procapsids transformed into polyhedral, mature capsids, providing further confirmation of their status as precursors.  相似文献   

20.
Proteins associated with mRNA in cells infected with herpes simplex virus   总被引:2,自引:0,他引:2  
The structure of messenger ribonucleoprotein (mRNP) complexes in herpes simplex virus type 1 (HSV-1) infected cells was analyzed by examining the proteins that could be crosslinked to polyadenylated mRNAs by irradiation of intact cells with ultraviolet light. The profiles of crosslinked proteins were qualitatively similar for mRNPs from mock infected and infected cells. However, infection with wild type HSV-1 caused a decrease in the abundance of a major 52 kda protein and an increase in a 49 kda protein. These changes were observed at early times after infection. They occurred following infection with wild type HSV-1 under conditions that blocked viral gene expression, but not following infection with the virion host shutoff mutant vhs 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号