首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang Y  Rowley JD 《DNA Repair》2006,5(9-10):1282-1297
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.  相似文献   

2.
Felix CA  Kolaris CP  Osheroff N 《DNA Repair》2006,5(9-10):1093-1108
Acute leukemias with balanced chromosomal translocations, protean morphologic and immunophenotypic presentations but generally shorter latency and absence of myelodysplasia are recognized as a complication of anti-cancer drugs that behave as topoisomerase II poisons. Translocations affecting the breakpoint cluster region of the MLL gene at chromosome band 11q23 are the most common molecular genetic aberrations in leukemias associated with the topoisomerase II poisons. These agents perturb the cleavage-religation equilibrium of topoisomerase II and increase cleavage complexes. One model suggests that this damages the DNA directly and leads to chromosomal breakage, which may result in untoward DNA recombination in the form of translocations. This review will summarize the evidence for topoisomerase II involvement in the genesis of translocations and extension of the model to acute leukemia in infants characterized by similar MLL translocations.  相似文献   

3.
The t(9;22) BCR/ABL fusion is associated with over 90% of chronic myelogenous and 25% of acute lymphocytic leukemia. Chromosome 11q23 translocations in acute myeloid and lymphoid leukemia cells demonstrate myeloid lymphoid leukemia (MLL) fusions with over 40 gene partners, like AF9 and AF4 on chromosomes 9 and 4, respectively. Therapy-related leukemia is associated with the above gene rearrangements following the treatment with topoisomerase II (topo II) inhibitors. BCR, ABL, MLL, AF9 and AF4 have defined patient breakpoint cluster regions. Chromatin structural elements including topo II and DNase I cleavage sites and scaffold attachment sites have previously been shown to closely associate with the MLL and AF9 breakpoint cluster regions, implicating these elements in non-homologous recombination (NHR). In this report, using cell lines and primary cells, chromatin structural elements were analyzed in BCR, ABL and AF4 and, for comparison, in MLL2, which is a homolog to MLL, but not associated with chromosome translocations. Topo II and DNase I cleavage sites associated with all breakpoint cluster regions, whereas SARs associated with ABL and AF4, but not with BCR. No close breakpoint clustering with the topo II/DNase I sites were observed; however, a statistically significant 5′ or 3′ distribution of patient breakpoints to the topo II DNase I sites was found, implicating DNA repair and exonucleases. Although MLL2 was expressed in all cell lines tested, except for the presence of one DNAse I site in the promoter, no other structural elements were found in MLL2. A NHR model presented demonstrates the importance of chromatin structure in chromosome translocations involved with leukemia.  相似文献   

4.
The emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes. A novel method, extension ligation-mediated polymerase chain reaction (ELMPCR), was used here for mapping topoisomerase-mediated DNA strand breaks and apoptotic DNA cleavage across a translocation-prone region of MLL in human cells. We report the first genomic map integrating translocation breakpoints and topoisomerase I, TOP2, and apoptotic DNA cleavage sites at nucleotide resolution across an MLL region harboring a t-AML translocation hotspot. This hotspot is flanked by a TOP2 cleavage site and is localized at one extremity of a minor apoptotic cleavage region, where multiple single- and double-strand breaks were induced by caspase-activated apoptotic nucleases. This cleavage pattern was in sharp contrast to that observed approximately 200 bp downstream in the exon 12 region, which displayed much stronger apoptotic cleavage but where no double-strand breaks were detected and no t-AML-associated breakpoints were reported. The localization and remarkable clustering of the t-AML breakpoints cannot be explained simply by the DNA cleavage patterns but might result from potential interactions between TOP2 poisoning, apoptotic DNA cleavage, and DNA repair attempts at specific sites of higher-order chromatin structure in apoptosis-evading cells. ELMPCR provides a new tool for investigating the role of DNA topoisomerases in fundamental genetic processes and translocations associated with cancer treatments involving topoisomerase-targeted drugs.  相似文献   

5.
Aplan PD 《DNA Repair》2006,5(9-10):1265-1272
A wide array of recurrent, non-random chromosomal translocations are associated with hematologic malignancies; experimental models have clearly demonstrated that many of these translocations are causal events during malignant transformation. Translocations involving the MLL gene are among the most common of these non-random translocations. Leukemias with MLL translocations have been the topic of intense interest because of the unusual, biphenotypic immunophenotype of these leukemias, because of the unique clinical presentation of some MLL translocations (infant leukemia and therapy-related leukemia), and because of the large number of different chromosomal loci that partner with MLL in these translocations. This review is focused on the potential mechanisms that lead to MLL translocations, and will discuss aberrant VDJ recombination, Alu-mediated recombination, non-homologous end joining, as well as the effect of DNA topoisomerase II poisons and chromatin structure.  相似文献   

6.
Human topoisomerase II (topo II) is the cellular target for a number of widely used antitumor agents, such as etoposide (VP16). These agents ‘poison’ the enzyme and induce it to generate DNA breaks that are lethal to the cell. Topo II-targeted drugs show a limited sequence preference, triggering double-stranded breaks throughout the genome. Circumstantial evidence strongly suggests that some of these breaks induce chromosomal translocations that lead to specific types of leukaemia (called treatment-related or secondary leukaemia). Therefore, efforts are ongoing to decrease these secondary effects. An interesting option is to increase the sequence-specificity of topo II-targeted drugs by attaching them to triplex-forming oligonucleotides (TFO) that bind to DNA in a highly sequence-specific manner. Here five derivatives of VP16 were attached to TFOs. The active topo II poisons, once linked, induced cleavage 13–14 bp from the triplex end where the drug was attached. The use of triple-helical DNA structures offers an efficient strategy for targeting topo II-mediated cleavage to DNA specific sequences. Finally, drug–TFO conjugates are useful tools to investigate the mechanistic details of topo II poisoning.  相似文献   

7.
The MLL gene is involved in many chromosomal translocations leading to both acute myeloid and lymphoid leukemia. Some patients treated for primary malignancies with chemotherapeutic agents that inhibit DNA topoisomerase II (topo II) develop treatment-related leukemia (t-AML) caused by MLL gene rearrangement. Whether these patients are unusually susceptible to anti-topo II drugs, or whether this is a random adverse event is unknown. To discover genetic polymorphisms that may predispose patients to t-AML development, we sequenced the 8.3-kb MLL breakpoint cluster region (BCR) from 22 patients who had been treated with topo II inhibitors and who developed t-AML and from 37 patients who did not, and from eight infants and 20 normal individuals. Four polymorphic sites within Alu repetitive elements were identified; three affected the length of poly-A tracts and one altered the size of a trinucleotide repeat. The three poly-A tract polymorphisms occurred with equal frequency in leukemic patients and controls and hence are not predictors of risk. The trinucleotide GAA repeat has three alleles: (GAA)4, (GAA)5, and (GAA)6. The (GAA)6 allele is very rare. The adult t-AML patients are almost exclusively (GAA)4/5 heterozygotes (83%), whereas the normal population is only 55% (GAA)4/5 heterozygotic and is represented equally by (GAA)4 and (GAA)5 homozygotes (20% each). Only certain trends could be established because of the small sample size of these leukemic groups. Whereas adult t-AML patients are more likely to be (GAA)4/5 heterozygotes, this is not statistically significant, and this polymorphism within the MLL BCR has only a suggestive association with t-AML development.  相似文献   

8.
Repetitive elements comprise nearly half of the human genome. Chromosomal rearrangements involving these elements occur in somatic and germline cells and are causative for many diseases. To begin to understand the molecular mechanisms leading to these rearrangements in mammalian cells, we developed an intron-based system to specifically induce chromosomal translocations at Alu elements, the most numerous family of repetitive elements in humans. With this system, we found that when double-strand breaks (DSBs) were introduced adjacent to identical Alu elements, translocations occurred at high frequency and predominantly arose from repair by the single-strand annealing (SSA) pathway (85%). With diverged Alu elements, translocation frequency was unaltered, yet pathway usage shifted such that nonhomologous end joining (NHEJ) predominated as the translocation pathway (93%). These results emphasize the fluidity of mammalian DSB repair pathway usage. The intron-based system is highly adaptable to addressing a number of issues regarding molecular mechanisms of genomic rearrangements in mammalian cells.  相似文献   

9.
10.
The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortés, N. Pastor, S. Mateos, I. Domínguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortés, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA.  相似文献   

11.
Genistein is a bioflavonoid enriched in soy products. However, high levels of maternal soy consumption have been linked to the development of infant leukemia ALL and AML. The majority of infant leukemia is linked to mixed lineage leukemia gene (MLL) translocations. Previous studies have implicated topoisomerase II (Top2) in genistein-induced infant leukemia. In order to understand the roles of the two Top2 isozymes in and the molecular mechanism for genistein-induced infant leukemia, we carried out studies in vitro using purified recombinant human Top2 isozymes, as well as studies in cultured mouse myeloid progenitor cells (32Dc13) and Top2β knockout mouse embryonic fibroblasts (MEFs). First, we showed that genistein efficiently induced both Top2α and Top2β cleavage complexes in the purified system as well as in cultured mouse cells. Second, genistein induced proteasomal degradation of Top2β in 32Dc13 cells. Third, the genistein-induced DNA double-strand break (DSB) signal, γ-H2AX, was dependent on the Top2β isozyme and proteasome activity. Fourth, the requirement for Top2β and proteasome activity was mirrored in genistein-induced DNA sequence rearrangements, as monitored by a DNA integration assay. Together, our results suggest a model in which genistein-induced Top2β cleavage complexes are processed by proteasome, leading to the exposure of otherwise Top2β-concealed DSBs and subsequent chromosome rearrangements, and implicate a major role of Top2β and proteasome in genistein-induced infant leukemia.  相似文献   

12.
13.
Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs), a process that requires spatial colocalization of chromosomal breakpoints. The “contact first” hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.  相似文献   

14.
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.  相似文献   

15.
Inverted DNA repeats are known to cause genomic instabilities. Here we demonstrate that double-strand DNA breaks (DSBs) introduced a large distance from inverted repeats in the yeast (Saccharomyces cerevisiae) chromosome lead to a burst of genomic instability. Inverted repeats located as far as 21 kb from each other caused chromosome rearrangements in response to a single DSB. We demonstrate that the DSB initiates a pairing interaction between inverted repeats, resulting in the formation of large dicentric inverted dimers. Furthermore, we observed that propagation of cells containing inverted dimers led to gross chromosomal rearrangements, including translocations, truncations, and amplifications. Finally, our data suggest that break-induced replication is responsible for the formation of translocations resulting from anaphase breakage of inverted dimers. We propose a model explaining the formation of inverted dicentric dimers by intermolecular single-strand annealing (SSA) between inverted DNA repeats. According to this model, anaphase breakage of inverted dicentric dimers leads to gross chromosomal rearrangements (GCR). This "SSA-GCR" pathway is likely to be important in the repair of isochromatid breaks resulting from collapsed replication forks, certain types of radiation, or telomere aberrations that mimic isochromatid breaks.  相似文献   

16.
17.
Alu repeats are the most common type of repetitive DNA sequences dispersed throughout the human genome. Technical advances in the field of cytogenetics and molecular biology have facilitated the analysis of epithelial tumors and hematologic malignancies which has led to the observation of Alu elements in and near sites often involved in chromosomal rearrangements. Repair mechanisms of double strand breaks (DSB) such as homol-ogous recombination (HR) may rely on the sequence homology of Alu repeats, potentially leading to chromosomal rearrange-ments. Databases have confirmed the strong association between Alu repeats, specifically the 26 bp consensus sequence and chro-mosomal regions involved in deletions and translocations. Although the Alu repetitive sequence is a potential "hotspot" during homologous recombination, there are other cellular mech-anisms that may play a more prominent role in the initiation of chromosomal rearrangements.  相似文献   

18.
19.
Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.  相似文献   

20.
Reciprocal chromosomal translocations are implicated in the etiology of many tumors, including leukemias, lymphomas, and sarcomas. DNA double-strand breaks (DSBs) caused by various cellular processes and exogenous agents are thought to be responsible for the generation of most translocations. Mammalian cells have multiple pathways for repairing DSBs in the chromosomes: non-homologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA), which is a specialized pathway involving sequence repeats. In this review, we summarize the various reporters that have been used to examine the potential for each of these DSB repair pathways to mediate translocation formation in mammalian cells. This approach has demonstrated that NHEJ is very proficient at mediating translocation formation, while HR is not because of crossover suppression. Although SSA can efficiently mediate translocations between identical repeats, its contribution to translocation formation is likely very limited because of sequence divergence between repetitive elements in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号