首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The native states of proteins exist as an ensemble of conformationally similar microstates. The fluctuations among different microstates are of great importance for the functions and structural stability of proteins. Here, we demonstrate that single molecule atomic force microscopy (AFM) can be used to directly probe the existence of multiple folded microstates. We used the AFM to repeatedly stretch and relax a recombinant tenascin fragment TNfnALL to allow the fibronectin type III (FnIII) domains to undergo repeated unfolding/refolding cycles. In addition to the native state, we discovered that some FnIII domains can refold from the unfolded state into a previously unrecognized microstate, N* state. This novel state is conformationally similar to the native state, but mechanically less stable. The native state unfolds at approximately 120 pN, while the N* state unfolds at approximately 50 pN. These two distinct populations of microstates constitute the ensemble of the folded states for some FnIII domains. An unfolded FnIII domain can fold into either one of the two microstates via two distinct folding routes. These results reveal the dynamic and heterogeneous picture of the folded ensemble for some FnIII domains of tenascin, which may carry important implications for the mechanical functions of tenascins in vivo.  相似文献   

2.
We describe the development and testing of a simple statistical mechanics methodology for duplex DNA applicable to sequences of any composition and extensible to genomes. The microstates of a DNA sequence are modeled in terms of blocks of basepairs that are assumed to be fully closed (paired) or open. This approach generates an ensemble of bubblelike microstates that are used to calculate the corresponding partition function. The energies of the microstates are calculated as additive contributions from hydrogen bonding, basepair stacking, and solvation terms parameterized from a comprehensive series of molecular dynamics simulations including solvent and ions. Thermodynamic properties and nucleotide stability constants for DNA sequences follow directly from the partition function. The methodology was tested by comparing computed free energies per basepair with the experimental melting temperatures of 60 oligonucleotides, yielding a correlation coefficient of −0.96. The thermodynamic stability of genic/nongenic regions was tested in terms of nucleotide stability constants versus sequence for the Escherichia coli K-12 genome. It showed clear differentiation of the genes from promoters and captures genic regions with a sensitivity of 0.94. The statistical thermodynamic model presented here provides a seemingly new handle on the challenging problem of interpreting genomic sequences.  相似文献   

3.
We describe the development and testing of a simple statistical mechanics methodology for duplex DNA applicable to sequences of any composition and extensible to genomes. The microstates of a DNA sequence are modeled in terms of blocks of basepairs that are assumed to be fully closed (paired) or open. This approach generates an ensemble of bubblelike microstates that are used to calculate the corresponding partition function. The energies of the microstates are calculated as additive contributions from hydrogen bonding, basepair stacking, and solvation terms parameterized from a comprehensive series of molecular dynamics simulations including solvent and ions. Thermodynamic properties and nucleotide stability constants for DNA sequences follow directly from the partition function. The methodology was tested by comparing computed free energies per basepair with the experimental melting temperatures of 60 oligonucleotides, yielding a correlation coefficient of −0.96. The thermodynamic stability of genic/nongenic regions was tested in terms of nucleotide stability constants versus sequence for the Escherichia coli K-12 genome. It showed clear differentiation of the genes from promoters and captures genic regions with a sensitivity of 0.94. The statistical thermodynamic model presented here provides a seemingly new handle on the challenging problem of interpreting genomic sequences.  相似文献   

4.
A recombinant 19-kDa human fibroblast collagenase catalytic fragment modeled on a naturally occurring proteolytic product was purified from E. coli inclusion bodies. Following renaturation in the presence of zinc and calcium, the fragment demonstrated catalytic activity with the same primary sequence specificity against small synthetic substrates as the full-length collagenase. Unlike the parent enzyme, it rapidly cleaved casein and gelatin but not native type I collagen. Intrinsic fluorescence of the three tryptophan residues was used to monitor the conformational state of the enzyme, which underwent a 24-nm red shift in emission upon denaturation accompanied by quenching of the fluorescence and loss of catalytic activity. Low concentrations of denaturant unfolded the fragment while the full-length enzyme displayed a shallow extended denaturation curve. Calcium remarkably stabilized the 19-kDa fragment, zinc less so, while together they were synergistically stabilizing. Among divalent cations, calcium was the most effective stabilizer, EC50 approximately 60 microM, and similar amounts were required for substrate hydrolysis. Catalytic activity was more sensitive to denaturation than was tryptophan fluorescence. Least sensitive was the polypeptide backbone secondary structure assessed by CD. These observations suggest that the folding of the 19-kDa collagenase fragment is a multistep process stabilized by calcium.  相似文献   

5.
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.  相似文献   

6.
Two conformationally distinct regions were revealed by tryptic cleavage of six undenatured variant surface glycoproteins purified from clones of Trypanosoma brucei. Within 5 min, the native glycoproteins (65,000 mol.wt.) were cleaved, yielding a large N-terminal fragment (48,000-55,000 mol.wt. depending on the variant) together with one or more C-terminal fragments. After 30-60 min incubation, further breakdown of the large fragment occurred in some variants. The ultimate large product (40,000-52,000 mol.wt.) was very resistant to further degradation by trypsin (in the absence of denaturation). The distinction between N-terminal and C-terminal domains may be significant in relation to the organization and function of these glycoproteins on the trypanosome surface.  相似文献   

7.
8.
The highly complex G + C-rich satellite DNA of the Bermuda land crab Gecarcinus lateralis has been studied by denaturation mapping. Following digestion of the satellite with EndoR.Eco RI, the major 2.07-kilobase pair (kbp) basic repeating unit and a minor 4.14-kbp fragment were exposed to 254 nm light in the presence of silver ions, conditions which resulted in essentially irreversible denaturation of regions rich in adjacent pyrimidines by the formation of pyrimidine dimers. The positions and sizes of the denatured regions were determined in electron micrographs of partially denatured 2.07-kbp and 4.14-kbp fragments spread in the presence of formamide. After 15 min exposure to UV, 90% of the 2.07-kbp fragments had a denaturation bubble averaging 0.17 kbp centered around one-third (0.64 kbp) the total length; 20% exhibited another in the region from 1.8 kbp to 2.07 kbp. Similarly, about 90% of the 4.14-kbp fragments had denatured regions centered at 0.64 kbp and 2.75 kbp and 20% of the fragments had denaturation bubbles in regions centered at 1.92 kbp and 3.9 kbp. The positions of the denaturation bubbles in the 4.14-kbp fragments support restriction enzyme mapping evidence that it is a dimer of the 2.07-kbp fragment arranged head to tail. Sequencing data show that the predominant sequence of a 0.29-kbp region centered around 0.64 kbp in the basic repeat unit is 49% A + T and that 42% of the bases are adjacent TTs and CTs capable of dimerization under the conditions used.  相似文献   

9.
Summary The thermal melting profile of purified Saccharomyces cerevisiae ribosomal DNA (rDNA) is biphasic indicating considerable intramolecular heterogeneity in base composition. The first phase of the transition, about 20% of the total hyperchromic shift, has a Tm of 80.6°C and the second phase has a Tm of 87.3°C, corresponding to GC contents of 28 and 44%, respectively. The Tm of the nonribosomal nuclear DNA, called DNA, is 85.7°C. This heterogeneity in GC distribution in the rDNA is also reflected in its denaturation map. A denaturation map of the 5.6×106 dalton rDNA SmaI restriction fragment, which represents monomer units of the rDNA, shows that specific regions of the repeating unit denature more readily than the remainder and apparently have a significantly higher AT content. By aligning the rDNA denaturation map with the restriction endonuclease map, we have been able to determine that the AT-rich segments are localized in the transcribed and nontranscribed spacer regions of the rDNA repeating unit. Buoyant density determinations of individual rDNA restriction fragments corroborate the locations of AT-rich regions.A denaturation map of the tandem repeating units in higher molecular weight rDNA has also been constructed and compared with the map of the SmaI fragment. The results show that the repeating units are uniform in size, that they are not separated by large heterogeneous regions, and that they are arranged in head-to-tail array.  相似文献   

10.
Selective stabilization of either the N- or C-terminal half (by ligands binding to these regions) of rat brain hexokinase against partial denaturation with guanidine hydrochloride and subsequent digestion with trypsin has provided a means for isolating these regions, referred to as N fragment and C fragment, respectively, in quantities adequate for characterization. The N fragment (mol wt 52 kDa) is devoid of catalytic activity. In contrast, the C fragment (mol wt 51 kDa) has a specific activity of about 110 U/mg, nearly twice that (60 U/mg) of the intact 100-kDa enzyme, indicating that the kappa cat is virtually identical for both species. Unlike the parent enzyme, the C fragment is quite sensitive to inhibition by Pi (competitive vs ATP, noncompetitive vs Glc); sulfate and arsenate, but not acetate, inhibit with effectiveness similar to that seen with Pi. The Glc-6-P analog, 1,5-anhydroglucitol-6-P, also inhibits the C fragment (competitive vs ATP, uncompetitive vs Glc). Both N and C fragments bind to Affi-Gel Blue, an affinity matrix bearing a covalently attached analog of ATP, and are eluted by hexose 6-phosphates competitive with nucleotide binding to the parent enzyme. Based on the ability of various hexoses and hexose 6-phosphates (and analogs) to protect against guanidine-induced denaturation and subsequent proteolysis it is concluded that both fragments contain discrete sites for hexoses and hexose 6-phosphates, with specificities resembling those seen for the binding of these ligands to the parent enzyme. Synergistic interactions between the hexose and hexose-6-P binding sites, previously seen with the parent enzyme, are also observed with the C fragment but not the N fragment. The existence of binding sites for hexoses and hexose 6-phosphates on both halves conflicts with previous binding studies demonstrating a single hexose binding site and a single hexose 6-phosphate binding site on the intact 100-kDa enzyme, leading to the conclusion that one of each pair of sites must be latent in the intact enzyme, becoming manifest only in the isolated discrete halves. Several investigators have previously suggested that the 100-kDa mammalian hexokinases evolved by duplication and fusion of a gene encoding an ancestral 50-kDa Glc-6-P-insensitive hexokinase, similar to the present-day yeast enzyme, with sensitivity to Glc-6-P resulting from evolution of a duplicated catalytic site into a regulatory site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The denaturation of immunoglobulin G was studied by different calorimetric methods and circular dichroism spectroscopy. The thermogram of the immunoglobulin showed two main transitions that are a superimposition of distinct denaturation steps. It was shown that the two transitions have different sensitivities to changes in temperature and pH. The two peaks represent the F(ab) and F(c) fragments of the IgG molecule. The F(ab) fragment is most sensitive to heat treatment, whereas the F(c) fragment is most sensitive to decreasing pH. The transitions were independent, and the unfolding was immediately followed by an irreversible aggregation step. Below the unfolding temperature, the unfolding is the rate-determining step in the overall denaturation process. At higher temperatures where a relatively high concentration of (partially) unfolded IgG molecules is present, the rate of aggregation is so fast that IgG molecules become locked in aggregates before they are completely denatured. Furthermore, the structure of the aggregates formed depends on the denaturation method. The circular dichroism spectrum of the IgG is also strongly affected by both heat treatment and low pH treatment. It was shown that a strong correlation exists between the denaturation transitions as observed by calorimetry and the changes in secondary structure derived from circular dichroism. After both heat- and low-pH-induced denaturation, a significant fraction of the secondary structure remains.  相似文献   

12.
S Y Shiue  J C Hsieh    J Ito 《Nucleic acids research》1991,19(14):3805-3810
DNA replication of PRD1, a lipid-containing phage, is initiated by a protein-priming mechanism. The terminal protein encoded by gene 8 acts as a protein primer in DNA synthesis by forming an initiation complex with the 5'-terminal nucleotide, dGMP. The linkage between the terminal protein and the 5' terminal nucleotide is a tyrosylphosphodiester bond. The PRD1 terminal protein contains 13 tyrosine residues in a total of 259 amino acids. By site-directed mutagenesis of cloned PRD1 gene 8, we replaced 12 of the 13 tyrosine residues in the terminal protein with phenylalanine and the other tyrosine residue with asparagine. Functional analysis of these mutant terminal proteins suggested that tyrosine-190 is the linking amino acid that forms a covalent bond with dGMP. Cyanogen bromide cleavage studies also implicated tyrosine-190 as the DNA-linking amino acid residue of the PRD1 terminal protein. Our results further show that tyrosine residues at both the amino-terminal and the carboxyl-terminal regions are important for the initiation complex forming activity. Predicted secondary structures for the regions around the DNA linking amino acid residues were compared in three terminal proteins (phi 29, adenovirus-2, and PRD1). While the linking amino acids serine-232 (phi 29) and serine-577 (adenovirus-2) are found in beta-turns in hydrophilic regions, the linking tyrosine-190 of the PRD1 terminal protein is found in a beta-sheet in a hydrophobic region.  相似文献   

13.
Mutations in prion protein are thought to be causative of inherited prion diseases favoring the spontaneous conversion of the normal prion protein into the scrapie-like pathological prion protein. We previously reported that, by controlled thermal denaturation, human prion protein fragment 90-231 acquires neurotoxic properties when transformed in a β-rich conformation, resembling the scrapie-like conformation. In this study we generated prion protein fragment 90-231 bearing mutations identified in familial prion diseases (D202N and E200K), to analyze their role in the induction of a neurotoxic conformation. Prion protein fragment 90-231(wild type) and the D202N mutant were not toxic in native conformation but induced cell death only after thermal denaturation. Conversely, prion protein fragment 90-231(E200K) was highly toxic in its native structure, suggesting that E200K mutation per se favors the acquisition of a peptide neurotoxic conformation. To identify the structural determinants of prion protein fragment 90-231 toxicity, we show that while the wild type peptide is structured in α-helix, hPrP90-231 E200K is spontaneously refolded in a β-structured conformer characterized by increased proteinase K resistance and propensity to generate fibrils. However, the most significant difference induced by E200K mutation in prion protein fragment 90-231 structure in native conformation we observed, was an increase in the exposure of hydrophobic amino-acids on protein surface that was detected in wild type and D202N proteins only after thermal denaturation. In conclusion, we propose that increased hydrophobicity is one of the main determinants of toxicity induced by different mutations in prion protein-derived peptides.  相似文献   

14.
We investigated the denaturation of tetrameric 20 beta-hydroxysteroid dehydrogenase (20R)-17 beta,20 beta,21-trihydroxysteroid:NAD+ oxidoreductase, EC 1.1.1.53) to find out whether intermediate states are formed during the process. The denaturation process was studied in the presence and absence of stabilizers, both specific, such as NADH, and non-specific, such as the salting-out anion phosphate. Changes in enzymatic activity, intrinsic protein fluorescence and far-ultraviolet circular dichroism were monitored. When NADH was present, denaturation of the enzyme by urea was a one-step transition between the native and the completely denatured state. In dilute phosphate, and even more so in concentrated phosphate, the existence of intermediate states with different stability is evidenced by the noncoincidence of the transition curves that probe for different functional and conformational aspects of the enzyme. Therefore, for 20 beta-hydroxysteroid dehydrogenase the formation of intermediates can be prevented by adding NADH, or enhanced by adding concentrated phosphate.  相似文献   

15.
Thermal stability of human plasma fibronectin and its constituent domains   总被引:1,自引:0,他引:1  
Human plasma fibronectin undergoes thermal denaturation with a midpoint between 62 and 64 degrees C. The irreversible transition is characterized by an increase in the intensity and wavelength of intrinsic tryptophan fluorescence, by an increase in the ability to enhance the fluorescence of 1,8-anilinonaphthalene sulfonate, and by an increase in the fluorescence polarization of covalently attached fluorescein. Addition of molecules which bind to fibronectin with high affinity, e.g. gelatin or heparin, had no stabilizing effect. This was attributed to the presence of multiple domains, all of which must be stabilized to prevent denaturation and aggregation. Further support for this interpretation came from studies of six different proteolytic fragments of fibronectin which collectively span almost the entire molecule. Cell-binding fragments derived from the central regions of the chain were least stable, exhibiting behavior similar to that of the whole protein. Fragments derived from the C-terminal regions were more stable by 7-8 degrees C, and those derived from the N-terminal region showed no thermal transition by any of the fluorescence parameters up to 85 degrees C in some experiments. A fluorescein-labeled 60-kilodalton gelatin-binding fragment which had been heated to 70 degrees C produced an increase in polarization upon addition of gelatin with Kd = 1.3 X 10(-7) M, similar to that of an unheated control. The intrinsic fluorescence spectra of the fragments had maxima which decreased progressively from 335 nm at the N terminus to 313 nm at the C terminus. These observations further elaborate the multidomain structure of human plasma fibronectin and reveal significant differences between the tertiary structure and stabilities of the various domains.  相似文献   

16.
Fourier transform infrared (FTIR) spectroscopy was used to investigate the structural and thermal denaturation of the C2 domain of PKC alpha (PKC-C2) and its complexes with Ca(2+) and phosphatidic acid vesicles. The amide I regions in the original spectra of PKC-C2 in the Ca(2+)-free and Ca(2+)-bound states are both consistent with a predominantly beta-sheet secondary structure below the denaturation temperatures. Spectroscopic studies of the thermal denaturation revealed that for the PKC-C2 domain alone the secondary structure abruptly changed at 50 degrees C. While in the presence of 2 and 12.5 mM Ca(2+), the thermal stability of the protein increased to 60 and 70 degrees C, respectively. Further studies using a mutant lacking two important amino acids involved in Ca(2+) binding (PKC-C2D246/248N) demonstrated that these mutations were inherently more stable to thermal denaturation than the wild-type protein. Phosphatidic acid binding to the PKC-C2 domain was characterized, and the lipid-protein binding became Ca(2+)-independent when 100 mol% phosphatidic acid vesicles were used. The mutant lacking two Ca(2+) binding sites was also able to bind to phosphatidic acid vesicles. The effect of lipid binding on secondary structure and thermal stability was also studied. Beta-sheet was the predominant structure observed in the lipid-bound state, although the percentage represented by this structure in the total area of the amide I band significantly decreased from 60% in the lipid-free state to 47% in the lipid-bound state. This decrease in the beta-sheet component of the lipid-bound complex correlates well with the significant increase observed in the 1644 cm(-1) band which can be assigned to loops and disordered structure. Thermal stability after lipid binding was very high, and no sign of thermal denaturation was observed in the presence of lipids under the conditions that were studied.  相似文献   

17.
18.
Native-like complexes of proteins, formed by the association of two complementary fragments comprising the entire sequence of the protein, can be used to gain insight into the stability and folding of the intact protein. We have studied the structural, thermodynamic and kinetic properties of four barnase complexes, with the cleavage site at different positions of the amino-acid chain (CB36, at position 36; CB56, at position 56; CB68, at position 68; and CB79, at position 79). The four barnase complexes have native-like structure as shown by fluorescence, far-and near-UV CD, size-exclusion chromatography and NMR. The NMR characterization indicated that the structural changes were mainly located in regions close to the cleavage site. The main core of the protein was fully formed and the overall structure was similar to that of intact barnase. The thermal and chemical denaturation showed that all complexes were substantially destabilized. CB56 displayed two denaturation transitions, probably because of the presence of partially folded conformations around the cleavage site. The rate constant for the association/folding of fragments decreased with the decreasing length of the C-terminal fragment. Thus, the larger the fragment (and, consequently, the larger the amount of residual native-like structure), the faster the association. These findings are consistent with the proposed model of barnase folding.  相似文献   

19.
20.
Restriction fragments of genomic DNA from Desulfovibrio salexigens (ATCC 14822) containing the structural gene coding for the flavodoxin protein were identified using the entire coding region of the gene for the Desulfovibrio vulgaris (Hildenborough) flavodoxin as a probe (Krey, G.D., Vanin, E.F., and Swenson, R.P. (1988) J. Biol. Chem. 263, 15436-15443). A 1.4-kb PstI-HindIII fragment was ultimately identified which contains an open reading frame coding for a polypeptide of 146 amino acid residues that was highly homologous to the D. vulgaris flavodoxin, sharing a sequence identity of 55%. When compared to the X-ray crystal structure of the D. vulgaris protein, the homologous regions were largely confined to those portions of the protein which are in the immediate vicinity of the flavin mononucleotide cofactor binding site. Tryptophan-60 and tyrosine-98, which reside on either side of the isoalloxazine ring of the cofactor, are conserved, as are the sequences of the polypeptide loop that interacts with the phosphate moiety of the flavin. Acidic residues forming the interface of model electron-transfer complexes with certain cytochrome c proteins are retained. The flavodoxin holoprotein is over-expressed in E. coli from the cloned gene using its endogenous promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号