首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Membrane trafficking is central to construction of the cell plate during plant cytokinesis. Consequently, a detailed understanding of the process depends on the characterization of molecules that function in the formation, transport, targeting, and fusion of membrane vesicles to the developing plate, as well as those that participate in its consolidation and maturation into a fully functional partition. Here we report the initial biochemical and functional characterization of patellin1 (PATL1), a novel cell-plate-associated protein that is related in sequence to proteins involved in membrane trafficking in other eukaryotes. Analysis of the Arabidopsis genome indicated that PATL1 is one of a small family of Arabidopsis proteins, characterized by a variable N-terminal domain followed by two domains found in other membrane-trafficking proteins (Sec14 and Golgi dynamics domains). Results from immunolocalization and biochemical fractionation studies suggested that PATL1 is recruited from the cytoplasm to the expanding and maturing cell plate. In vesicle-binding assays, PATL1 bound to specific phosphoinositides, important regulators of membrane trafficking, with a preference for phosphatidylinositol(5)P, phosphatidylinositol(4,5)P(2), and phosphatidylinositol(3)P. Taken together, these findings suggest a role for PATL1 in membrane-trafficking events associated with cell-plate expansion or maturation and point to the involvement of phosphoinositides in cell-plate biogenesis.  相似文献   

2.
3.
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra‐ and/or intercellular viral movement. Using yeast two‐hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid‐mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP–PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP‐containing complexes less efficient and diminishing cell‐to‐cell movement.  相似文献   

4.
Distinct sets of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are distributed to specific intracellular compartments and catalyze membrane fusion events. Although the central role of these proteins in membrane fusion is established in nonplant systems, little is known about their role in the early secretory pathway of plant cells. Analysis of the Arabidopsis (Arabidopsis thaliana) genome reveals 54 genes encoding SNARE proteins, some of which are expected to be key regulators of membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. To gain insights on the role of SNAREs of the early secretory pathway in plant cells, we have cloned the Arabidopsis v-SNAREs Sec22, Memb11, Bet11, and the t-SNARE Sed5, and analyzed their distribution in plant cells in vivo. By means of live cell imaging, we have determined that these SNAREs localize at the Golgi apparatus. In addition, Sec22 was also distributed at the ER. We have then focused on understanding the function of Sec22 and Memb11 in comparison to the other SNAREs. Overexpression of the v-SNAREs Sec22 and Memb11 but not of the other SNAREs induced collapse of Golgi membrane proteins into the ER, and the secretion of a soluble secretory marker was abrogated by all SNAREs. Our studies suggest that Sec22 and Memb11 are involved in anterograde protein trafficking at the ER-Golgi interface.  相似文献   

5.
The objective of this work is to identify proteins of the human and porcine parasite, Taenia solium, which may be exploited for control of the parasite. Through screening a cDNA library of T. solium metacestodes, we have identified a novel Sec-14-like Taenia lipid-binding protein that may play an important role in membrane trafficking. The Sec14-like sequence is a single copy gene, encoding a putative polypeptide of 320 amino acids and 36.1 kDa (sec14Tsol protein). Secondary amino acid structural analysis suggested that the sec14Tsol protein might contain two distinct structural domains, an amino-terminal alpha-helix rich domain and a mixed alpha-helix/beta-stand carboxy-terminal zone, showing homology with the conserved SEC14 domain found in a great number of proteins that bind lipids, as the regulators of membrane trafficking between Golgi membrane bilayers. Significantly, therefore, in a phosphoinositide-binding assay, sec14Tsol purified recombinant protein specifically interacted with important lipid regulators of membrane trafficking, with a preference for PI(3)P(2), PI(3,4)P(2), PI(4,5)P(2) and phosphatidic acid. Moreover, the sec14Tsol protein was localized in the Golgi apparatus of transfected cells and in the spiral canal region of T. solium metacestode tegument. As sec14Tsol protein may play an important role in membrane trafficking, its demonstrated localisation in the intact parasite tegument suggests its involvement in the function of the tegument and thus perhaps interaction with the host.  相似文献   

6.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.  相似文献   

7.
Biogenesis of chloroplasts involves a series of protein trafficking events. Nuclear‐encoded proteins are imported into the organelle, and then trafficked to various chloroplast locations by systems that are directly homologous to bacterial systems. Although the thylakoid‐based systems have been studied extensively, much less is known about the systems that reside and function in the inner envelope membrane. One such system, the Sec2 system, is homologous to both the thylakoid‐based Sec1 system and bacterial Sec systems, and may mediate both integration and translocation across the inner envelope. At a minimum, this system is expected to include three components, but only two, SCY2 and SECA2, have been identified in Arabidopsis. Bioinformatics and protein modeling were used to identify the protein encoded by At4g38490 as a candidate for the missing component (SECE2). Cellular localization, biochemistry, protein interaction assays in yeast, and co‐immunoprecipitation experiments were used to establish that this protein is an integral membrane protein of the inner envelope, and specifically interacts with the SCY2 component in vivo. Sequence analyses indicated that SECE2 proteins are found in a variety of plants, and differ from the thylakoid SECE1 proteins in a stroma‐exposed helical domain, which may contribute to their specificity. Finally, a genetic analysis indicated that SECE2 plays an essential role in plant growth and development.  相似文献   

8.
Polarized membrane trafficking during plant cytokinesis and cell expansion are critical for plant morphogenesis, yet very little is known about the molecular mechanisms that guide this process. Dynamin and dynamin-related proteins are large GTP binding proteins that are involved in membrane trafficking. Here, we show that two functionally redundant members of the Arabidopsis dynamin-related protein family, ADL1A and ADL1E, are essential for polar cell expansion and cell plate biogenesis. adl1A-2 adl1E-1 double mutants show defects in cell plate assembly, cell wall formation, and plasma membrane recycling. Using a functional green fluorescent protein fusion protein, we show that the distribution of ADL1A is dynamic and that the protein is localized asymmetrically to the plasma membrane of newly formed and mature root cells. We propose that ADL1-mediated membrane recycling is essential for plasma membrane formation and maintenance in plants.  相似文献   

9.
Lee MH  Lee SH  Kim H  Jin JB  Kim DH  Hwang I 《Molecules and cells》2006,22(2):210-219
Dynamin-related protein 2A (AtDRP2A, formally ADL6), a member of the dynamin family, is critical for protein trafficking from the TGN to the central vacuole. However, the mechanism controlling its activity is not well understood in plant cells. We isolated Arabidopsis sec13 homolog1 (AtSeh1) that interacts with AtDRP2A by a yeast two-hybrid screening. AtSeh1 has four WD40 motifs and amino acid sequence homology to Sec13, a component of COPII vesicles. Coimmunoprecipitation and protein pull-down experiments demonstrated specific interaction between AtSeh1 and AtDRP2A. AtSeh1 bound to the pleckstrin homology domain of AtDRP2A in competition with the C-terminal domain of the latter, and this resulted in inhibition of the interaction between AtDRP2A and PtdIns3P in vitro. AtSeh1 localized to multiple locations: the nucleus, the prevacuolar compartment and the Golgi complex. Based on these results we propose that AtSeh1 plays a role in regulating cycling of AtDRP2A between membrane-bound and soluble forms.  相似文献   

10.
KEULE is required for cytokinesis in Arabidopsis thaliana. We have positionally cloned the KEULE gene and shown that it encodes a Sec1 protein. KEULE is expressed throughout the plant, yet appears enriched in dividing tissues. Cytokinesis-defective mutant sectors were observed in all somatic tissues upon transformation of wild-type plants with a KEULE-green fluorescent protein gene fusion, suggesting that KEULE is required not only during embryogenesis, but at all stages of the plant's life cycle. KEULE is characteristic of a Sec1 protein in that it appears to exist in two forms: soluble or peripherally associated with membranes. More importantly, KEULE binds the cytokinesis-specific syntaxin KNOLLE. Sec1 proteins are key regulators of vesicle trafficking, capable of integrating a large number of intra- and/or intercellular signals. As a cytokinesis-related Sec1 protein, KEULE appears to represent a novel link between cell cycle progression and the membrane fusion apparatus.  相似文献   

11.
The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets.  相似文献   

12.
13.
The exocyst is a well‐known complex which tethers vesicles at the cell membrane before fusion. Whether an individual subunit can execute a unique function is largely unknown. Using yeast‐two‐hybrid (Y2H) analysis, we found that EXO70A1 interacted with the GOLD domain of Patellin3 (PATL3). The direct EXO70A1‐PATL3 interaction was supported by in vitro and in vivo experiments. In Arabidopsis, PATL3‐GFP colocalized with EXO70A1 predominantly at the cell membrane, and PATL3 localization was insensitive to BFA and TryA23. Remarkably, in the exo70a1 mutant, PATL3 proteins accumulated as punctate structures within the cytosol, which did not colocalize with several endomembrane compartment markers, and was insensitive to BFA. Furthermore, PATL3 localization was not changed in the exo70e2, PRsec6 or exo84b mutants. These data suggested that EXO70A1, but not other exocyst subunits, was responsible for PATL3 localization, which is independent of its role in secretory/recycling vesicle‐tethering/fusion. Both EXO70A1 and PATL3 were shown to bind PI4P and PI(4,5)P2 in vitro. Evidence was obtained that the other four members of the PATL family bound to EXO70A1 as well, and shared a similar localization pattern as PATL3. These findings offered new insights into exocyst subunit‐specific function, and provided data and tools for further characterization of PATL family proteins.  相似文献   

14.
Sec12p and Sar1p are required for the formation of transport vesicles generated from the endoplasmic reticulum (ER) in the yeast Saccharomyces cerevisiae. Sec12p is an ER type II membrane protein that mediates the membrane attachment of the GTP-binding Sar1 protein. The SAR1 gene is a multi-copy suppressor of a thermosensitive sec12 mutation. In an attempt to identify functional homologues of Sec12p and Sar1p from other eukaryotic organisms, we screened cDNA expression libraries derived from the fission yeast Schizosaccharomyces pombe and from the plant Arabidopsis thaliana for complementation of the sec12ts mutation. Four individual cDNAs were isolated, two of which encode the S. pombe and A. thaliana homologues of Sar1p. The three Sar1 proteins are 67% identical on average. The two other cDNAs encode type II membrane proteins which were designated Stl1p for the S. pombe protein and Stl2p for the A. thaliana protein (Stl stands for Sec12p-like). Both proteins have NH2-terminal cytoplasmic domains which resemble that of Sec12p: they are similar in size and present a significant degree of amino acid identity with the cytoplasmic domain of Sec12p. In contrast, the lumenal domains of Sec12p, Stl1p and Stl2p are very different in size and do not show any appreciable homology. That Stl1p and Stl2p are functional homologues of Sec12p was confirmed by showing that expression of either cloned gene complements a sec12 null mutation. Our results indicate that some of the mechanisms regulating vesicle formation at the ER are conserved not only in yeasts, but also in plants.  相似文献   

15.
Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT 1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3 kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than Arabidopsis.  相似文献   

16.
We have isolated a cDNA encoding a small GTP-binding protein from an Arabidopsis thaliana cDNA library using an oligonucleotide probe derived from the most conserved domain of the ras superfamily. The cDNA encodes a 21.8 kDa protein, designated Rha1, which shows high homology to members of the ras superfamily in the regions involved in GTP binding, GTPase activity, and membrane attachment. The amino acid sequence is 60% identical to the sequence of the mammalian Rab5 protein, a small GTP-binding protein which is believed to be involved in endocytosis. Several regions, including the putative effector domain are completely conserved. This high percentage of amino acid identity suggests that the Rha1 protein is the functional plant counterpart of the Rab5 protein. When expressed in E. coli, the Rha1 protein was shown to bind GTP. The rha1 gene is most highly expressed in root and callus tissue, weakly expressed in stems and inflorescences and virtually not expressed in leaves and seed pods. Genomic Southern analysis revealed that rha 1 is part of a small multigene family.  相似文献   

17.
The components of the cellular machinery that accomplish the various complex and dynamic membrane fusion events that occur at the division plane during plant cytokinesis, including assembly of the cell plate, are not fully understood. The most well-characterized component, KNOLLE, a cell plate-specific soluble N-ethylmaleimide-sensitive fusion protein (NSF)-attachment protein receptor (SNARE), is a membrane fusion machine component required for plant cytokinesis. Here, we show the plant ortholog of Cdc48p/p97, AtCDC48, colocalizes at the division plane in dividing Arabidopsis cells with KNOLLE and another SNARE, the plant ortholog of syntaxin 5, SYP31. In contrast to KNOLLE, SYP31 resides in defined punctate membrane structures during interphase and is targeted during cytokinesis to the division plane. In vitro-binding studies demonstrate that AtCDC48 specifically interacts in an ATP-dependent manner with SYP31 but not with KNOLLE. In contrast, we show that KNOLLE assembles in vitro into a large approximately 20S complex in an Sec18p/NSF-dependent manner. These results suggest that there are at least two distinct membrane fusion pathways involving Cdc48p/p97 and Sec18p/NSF that operate at the division plane to mediate plant cytokinesis. Models for the role of AtCDC48 and SYP31 at the division plane will be discussed.  相似文献   

18.
Lee GJ  Kim H  Kang H  Jang M  Lee DW  Lee S  Hwang I 《Plant physiology》2007,143(4):1561-1575
Members of the epsin family of proteins (epsins) are characterized by the presence of an epsin N-terminal homology (ENTH) domain. Epsins have been implicated in various protein-trafficking pathways in animal and yeast (Saccharomyces cerevisiae) cells. Plant cells also contain multiple epsin-related proteins. In Arabidopsis (Arabidopsis thaliana), EPSIN1 is involved in vacuolar trafficking of soluble proteins. In this study, we investigated the role of Arabidopsis EpsinR2 in protein trafficking in plant cells. EpsinR2 contains a highly conserved ENTH domain but a fairly divergent C-terminal sequence. We found that the N-terminal ENTH domain specifically binds to phosphatidylinositol-3-P in vitro and has a critical role in the targeting of EpsinR2. Upon transient expression in protoplasts, hemagglutinin epitope-tagged EpsinR2 was translocated primarily to a novel cellular compartment, while a minor portion localized to the Golgi complex. Protein-binding experiments showed that EpsinR2 interacts with clathrin, AtVTI12, and the Arabidopsis homologs of adaptor protein-3 delta-adaptin and adaptor protein-2 alpha-adaptin. Localization experiments revealed that hemagglutinin epitope-tagged EpsinR2 colocalizes primarily with delta-adaptin and partially colocalizes with clathrin and AtVTI12. Based on these findings, we propose that EpsinR2 plays an important role in protein trafficking through interactions with delta-adaptin, AtVTI12, clathrin, and phosphatidylinositol-3-P.  相似文献   

19.
20.
Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than A rabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号