首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultraviolet radiation promotes the formation of a cyclobutane ring between adjacent pyrimidine residues on the same DNA strand to form a pyrimidine dimer. Such dimers may be restored to their monomeric forms through the action of a light-absorbing enzyme named DNA photolyase. The redox-active cofactor involved in the light-induced electron transfer reactions of DNA repair and enzyme photoactivation is a noncovalently bound FAD. In this paper, the FAD cofactor of Escherichia coli DNA photolyase was characterized as the neutral flavin semiquinone by EPR spectroscopy at 9.68 and 94.5 GHz. From the high-frequency/high-field EPR spectrum, the principal values of the axially symmetric g-matrix of FADH(*) were extracted. Both EPR spectra show an emerging hyperfine splitting of 0.85 mT that could be assigned to the isotropic hyperfine coupling constant (hfc) of the proton at N(5). To obtain more information about the electron spin density distribution ENDOR and TRIPLE resonance spectroscopies were applied. All major proton hfc's could be measured and unambiguously assigned to molecular positions at the isoalloxazin moiety of FAD. The isotropic hfc's of the protons at C(8alpha) and C(6) are among the smallest values reported for protein-bound neutral flavin semiquinones so far, suggesting a highly restricted delocalization of the unpaired electron spin on the isoalloxazin moiety. Two further hfc's have been detected and assigned to the inequivalent protons at C(1'). Some conclusions about the geometrical arrangement of the ribityl side chain with respect to the isoalloxazin ring could be drawn: Assuming tetrahedral angles at C(1') the dihedral angle between the C(1')-C(2') bond and the 2p(z)() orbital at N(10) has been estimated to be 170.4 degrees +/- 1 degrees.  相似文献   

2.
Xu L  Mu W  Ding Y  Luo Z  Han Q  Bi F  Wang Y  Song Q 《Biochemistry》2008,47(33):8736-8743
Escherichia coli DNA photolyase repairs cyclobutane pyrimidine dimer (CPD) in UV-damaged DNA through a photoinduced electron transfer mechanism. The catalytic activity of the enzyme requires fully reduced FAD (FADH (-)). After purification in vitro, the cofactor FADH (-) in photolyase is oxidized into the neutral radical form FADH (*) under aerobic conditions and the enzyme loses its repair function. We have constructed a mutant photolyase in which asparagine 378 (N378) is replaced with serine (S). In comparison with wild-type photolyase, we found N378S mutant photolyase containing oxidized FAD (FAD ox) but not FADH (*) after routine purification procedures, but evidence shows that the mutant protein contains FADH (-) in vivo as the wild type. Although N378S mutant photolyase is photoreducable and capable of binding CPD in DNA, the activity assays indicate the mutant protein is catalytically inert. We conclude that the Asn378 residue of E. coli photolyase is crucial both for stabilizing the neutral flavin radical cofactor and for catalysis.  相似文献   

3.
Escherichia coli photolyase catalyzes the repair of cyclobutane pyrimidine dimers (CPD) in DNA under near UV/blue-light irradiation. The enzyme contains flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF) as noncovalently bound light sensing cofactors. To study the apoprotein-chromophore interactions we developed a new procedure to prepare apo-photolyase. MTHF-free photolyase was obtained by binding the C-terminal His-tagged holoenzyme to a metal-affinity column at neutral pH and washing the column with deionized water. Under these conditions the flavin remains bound and the defolated enzyme can be released from the column with 0.5 M imidazole pH 7.2. The MTHF-free protein was still capable of DNA repair, showing 70% activity of native enzyme. Fluorescence polarization experiments confirmed that MTHF binding is weakened at low ionic strength. Apo-photolyase was obtained by treating the His-tagged holoenzyme with 0.5 M imidazole pH 10.0. The apo-photolyase thus obtained was highly reconstitutable and bound nearly stoichiometric amounts of FAD(ox). Photolyase reconstituted with FAD(ox) had about 34% activity of native enzyme, which increased to 83% when FAD(ox) was reduced to FADH(-). Reconstitution kinetics performed at 20 degrees C showed that apo-photolyase associates with FADH(-) much faster (k(obs) approximately 3,000 M(-1) s(-1)) than with FAD(ox) (k(obs)=16 [corrected] M(-1) s(-1)). The dissociation constant of the photolyase-FAD(ox) complex is about 2.3 microM and that of E-FADH(-) is not higher than 20 nM (pH 7.2).  相似文献   

4.
G Payne  M Wills  C Walsh  A Sancar 《Biochemistry》1990,29(24):5706-5711
Escherichia coli DNA photolyase contains two chromophore cofactors, 1,5-dihydroflavin adenine dinucleotide (FADH2) and (5,10-methenyltetrahydrofolyl)polyglutamate (5,10-MTHF). A procedure was developed for reversible resolution of apophotolyase and its chromophores. To investigate the structures important for the binding of FAD to apophotolyase and of photolyase to DNA, reconstitution experiments with FAD, FMN, riboflavin, 1-deazaFAD, 5-deazaFAD, and F420 were attempted. Only FAD and 5-deazaFAD showed high-affinity binding to apophotolyase. The apoenzyme had no affinity to DNA but did regain its specific binding to thymine dimer containing DNA upon binding stoichiometrically to FAD or 5-deazaFAD. Successful reduction of enzyme-bound FAD with dithionite resulted in complete recovery of photocatalytic activity.  相似文献   

5.
Escherichia coli DNA photolyase catalyzes the light-driven (300-500 nm) repair of pyrimidine dimers formed between adjacent pyrimidine bases in DNA exposed to UV light (200-300 nm). The light-driven repair process is facilitated by two enzyme-bound cofactors, FADH2 and 5,10-methenyltetrahydrofolate. The function of the folate has been characterized in greater detail in this series of experiments. Investigations of the relative binding affinities of photolyase for the monoglutamate and polyglutamate forms of 5,10-methenyltetrahydrofolate show that the enzyme has a greater affinity for the naturally occurring polyglutamate forms of the folate and that the exogenously added monoglutamate derivative is less tightly associated with the protein. Multiple turnover experiments reveal that the folate remains bound to photolyase even after 10 turnovers of the enzyme. Examination of the rates of repair by photolyase containing stoichiometric folate in the presence or absence of free folate under multiple turnover conditions and at micromolar concentrations of enzyme also demonstrates that the folate acts catalytically. The stimulation of turnover by exogenous folate seen at low concentrations of photolyase is shown to be due to the lower affinity of photolyase for the monoglutamate derivative used in reconstitution procedures. These results demonstrate that the folate of E. coli DNA photolyase is a bona fide cofactor and does not decompose or dissociate during multiple turnovers of the enzyme.  相似文献   

6.
7.
Native DNA photolyase, as isolated from Escherichia coli, contains a neutral flavin radical (FADH.) plus a pterin chromophore (5,10-methenyltetrahydropteroylpolyglutamate) and can be converted to its physiologically significant form by reduction of FADH. to fully reduced flavin (FADH2) with dithionite or by photoreduction. Either FADH2 or the pterin chromophore in dithionite-reduced native enzyme can function as a sensitizer in catalysis. Various enzyme forms (EFADox, EFADH., EFADH2, EPteFADox, EPteFADH., EPteFADH2, EPte) containing stoichiometric amounts of FAD in either of its three oxidation states and/or 5,10-methenyltetrahydrofolate (Pte) have been prepared in reconstitution experiments. Studies with EFADox and EPte showed that these preparations retained the ability to bind the missing chromophore. The results suggest that there could be considerable flexibility in the biological assembly of holoenzyme since the order of binding of the enzyme's chromophores is apparently unimportant, the binding of FAD is unaffected by its redox state, and enzyme preparations containing only one chromophore are reasonably stable. The same catalytic properties are observed with dithionite-reduced native enzyme or EFADH2. These preparations do not exhibit a lag in catalytic assays whereas lags are observed with preparations containing FADox or FADH. in the presence or absence of pterin. Photochemical studies show that these lags can be attributed to enzyme activation under assay conditions in a reaction involving photoreduction of enzyme-bound FADox or FADH. to FADH2. EPte is catalytically inactive, but catalytic activity is restored upon reconstitution of EPte with FADox. The results show that pterin is not required for dimer repair when FADH2 acts as the sensitizer but that FADH2 is required when dimer repair is initiated by excitation of the pterin chromophore. The relative intensity of pterin fluorescence in EPte, EPteFADH., EPteFADox, or EPteFADH2 has been used to estimate the efficiency of pterin singlet quenching by FADH. (93%), FADox (90%), or FADH2 (58%). Energy transfer from the excited pterin to flavin is energetically feasible and may account for the observed quenching of pterin fluorescence and also explain why photoreduction of FADox or FADH. is accelerated by the pterin chromophore. An irreversible photobleaching of the pterin chromophore is accelerated by FADH2 in a reaction that is accompanied by a transient oxidation of FADH2 to FADH.. Both pterin bleaching and FADH2 oxidation are inhibited by substrate.  相似文献   

8.
Cotruvo JA  Stubbe J 《Biochemistry》2011,50(10):1672-1681
Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (Fe(III)(2)-Y(?)) and dimanganese(III)-Y(?) (Mn(III)(2)-Y(?)) cofactors in the β2 subunit, NrdF [Cotruvo, J. A., Jr., and Stubbe, J. (2010) Biochemistry 49, 1297-1309]. Here we demonstrate, by purification of this protein from its endogenous levels in an E. coli strain deficient in its five known iron uptake pathways and grown under iron-limited conditions, that the Mn(III)(2)-Y(?) cofactor is assembled in vivo. This is the first definitive determination of the active cofactor of a class Ib RNR purified from its native organism without overexpression. From 88 g of cell paste, 150 μg of NrdF was isolated with ~95% purity, with 0.2 Y(?)/β2, 0.9 Mn/β2, and a specific activity of 720 nmol min(-1) mg(-1). Under these conditions, the class Ib RNR is the primary active RNR in the cell. Our results strongly suggest that E. coli NrdF is an obligate manganese protein in vivo and that the Mn(III)(2)-Y(?) cofactor assembly pathway we have identified in vitro involving the flavodoxin-like protein NrdI, present inside the cell at catalytic levels, is operative in vivo.  相似文献   

9.
Y F Li  P F Heelis  A Sancar 《Biochemistry》1991,30(25):6322-6329
DNA photolyases repair cyclobutadipyrimidines (Pyr()Pyr) in DNA by photoinduced electron transfer. The enzyme isolated from Escherichia coli contains methenyltetrahydrofolate (MTHF), which functions as photoantenna, and FADH2, which is the redox-active cofactor. During purification, FADH2 is oxidized to the blue neutral radical form, FADH., which has greatly diminished activity. Previous nanosecond flash photolysis studies [Heelis, P.F., Okamura, T., & Sancar, A. (1990) Biochemistry 29, 5694-5698] indicated that excitation of FADH. either directly by absorbing a photon or indirectly by electronic energy transfer from MTHF excited singlet state yielded an FADH. quartet which abstracted a hydrogen atom from a nearby tryptophan to generate the catalytically competent FADH2 from of the enzyme. Using site-directed mutagenesis, we replaced all 15 photolyase tryptophan residues by phenylalanine, individually, in order to identify the internal hydrogen atom donor responsible for photoreduction. We found that W306F mutation abolished photoreduction of FADH. without affecting the excited-state properties of FADH. or the substrate binding (KA approximately 10(9) M-1) of the enzyme. The specificity constant (kcat/km) was approximately 0 for the mutant enzyme in the absence of reducing agents in the reaction mixture, indicating that photoreduction of FADH. is an essential step for photorepair by photolyase in vitro. Chemical reduction of FADH. of the mutant enzyme restored the specificity constant to the wild-type level.  相似文献   

10.
P F Heelis  A Sancar 《Biochemistry》1986,25(25):8163-8166
Escherichia coli DNA photolyase contains a stable flavin neutral blue radical that is involved in photosensitized repair of pyrimidine dimers in DNA. We have investigated the effect of illumination on the radical using light of lambda greater than 520 nm from either a camera flash or laser. We find that both types of irradiations result in the photoreduction of the flavin radical with a quantum yield of 0.10 +/- 0.02. While photoreduction with the camera flash is minimal in the absence of an electron donor (dithiothreitol), laser flash photolysis at 532 nm reduces the flavin to the same extent in the presence or absence or an electron donor. Thus, it is concluded that the primary step in photoreduction involves an electron donor that is a constituent of the enzyme itself. Laser flash photolysis produces a transient absorption band at 420 nm that probably represents the absorption of the lowest excited doublet state (2(1)IIII*) of the radical and decays with first-order kinetics with k1 = 0.8 X 10(6) s-1. The photoreduction data combined with the results of recent studies on the activity of dithionite-reduced enzyme suggest that electron donation by excited states of E-FADH2 is the mechanism of flavin photosensitized dimer repair by E. coli DNA photolyase.  相似文献   

11.
Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by translocase, a complex of a protein-conducting channel, SecYEG, and a peripheral motor domain, SecA. SecYEG has been proposed to constitute an aqueous path for proteins to pass the membrane in an unfolded state. To probe the solvation state of the active channel, the polarity sensitive fluorophore N-((2-(iodoacetoxy)ethyl)-N-methyl) amino-7-nitrobenz-2-oxa-1,3-diazole was introduced at specific positions in the C-terminal region of the secretory protein proOmpA. Fluorescence measurements with defined proOmpA-DHFR translocation intermediates indicate mostly a water-exposed environment with a hydrophobic region in the center of the channel.  相似文献   

12.
UV mutation frequency responses for two types of Escherichia coli prototrophic mutant were measured. Only the response associated with a mutation targeted by a thymine-cytosine pyrimidine dimer was reduced in the dark in cells with amplified DNA photolyase. This specific reduction is attributed to the interruption of mutational DNA synthesis by a photolyase complex at the targeting dimer.  相似文献   

13.
Koppes LJ  Woldringh CL  Nanninga N 《Biochimie》1999,81(8-9):803-810
The active replication forks of E. coli B/r K cells growing with a doubling time of 210 min have been pulse-labeled with [(3)H] thymidine for 10 min. By electron-microscopic autoradiography the silver grains have been localized in the various length classes. From the known pattern of the DNA replication period in the cell cycle at slow growth and from the average position of grains per length class it was deduced that DNA replication starts in the cell center and that it remains there for a substantial part of the DNA replication period. This suggests the occurrence of a centrally located DNA replication compartment.  相似文献   

14.
15.
DNA photolyase catalyzes the photoreversal of pyrimidine dimers. The enzymes from Escherichia coli and yeast contain a flavin chromophore and a folate cofactor, 5,10-methenyltetrahydropteroylpolyglutamate. E. coli DNA photolyase contains about 0.3 mol of folate/mol flavin, whereas the yeast photolyase contains the full complement of folate. E. coli DNA photolyase is reconstituted to a full complement of the folate by addition of 5,10-methenyltetrahydrofolate to cell lysates or purified enzyme samples. The reconstituted enzyme displays a higher photolytic cross section under limiting light. Treatment of photolyase with sodium borohydride or repeated camera flashing results in the disappearance of the absorption band at 384 nm and is correlated with the formation of modified products from the enzyme-bound 5,10-methenyltetrahydrofolate. Photolyase modified in this manner has a decreased photolytic cross section under limiting light. Borohydride reduction results in the formation of 5,10-methylenetetrahydrofolate and 5-methyltetrahydrofolate, both of which are released from the enzyme. Repeated camera flashing results in photodecomposition of the enzyme-bound 5,10-methenyltetrahydrofolate and release of the decomposition products. Finally, it is observed that photolyase binds 10-formyltetrahydrofolate and appears to cyclize it to form the 5,10-methenyltetrahydrofolate chromophore.  相似文献   

16.
Leader peptidase, a novel serine protease in Escherichia coli, catalyzes the cleavage of the amino-terminal leader sequences from exported proteins. It is an integral membrane protein containing two transmembrane segments with its carboxy-terminal catalytic domain residing in the periplasmic space. Here, we report a procedure for the purification and the crystallization of a soluble non-membrane-bound form of leader peptidase (Δ2-75). Crystals were obtained by the sitting-drop vapor diffusion technique using ammonium dihydrogen phosphate as the precipitant. Interestingly, we have found that the presence of the detergent Triton X-100 is required to obtain crystals sufficiently large for X-ray analysis. The crystals belong to the tetragonal space group P42212, with unit cell dimensions of a = b = 115 Å and c = 100 Å, and contain 2 molecules per asymmetric unit. This is the first report of the crystallization of a leader (or signal) peptidase. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Previous studies have demonstrated that the Escherichia coli dnaK and grpE genes code for heat shock proteins. Both the Dnak and GrpE proteins are necessary for bacteriophage lambda DNA replication and for E. coli growth at all temperatures. Through a series of genetic and biochemical experiments, we have shown that these heat shock proteins functionally interact both in vivo and in vitro. The genetic evidence is based on the isolation of mutations in the dnaK gene, such as dnaK9 and dnaK90, which suppress the Tr- phenotype of bacteria carrying the grpE280 mutation. Coimmunoprecipitation of DnaK+ and GrpE+ proteins from cell lysates with anti-DnaK antibodies demonstrated their interaction in vitro. In addition, the DnaK756 and GrpE280 mutant proteins did not coimmunoprecipitate efficiently with the GrpE+ and DnaK+ proteins, respectively, suggesting that interaction between the DnaK and GrpE proteins is necessary for E. coli growth, at least at temperatures above 43 degrees C. Using this assay, we found that one of the dnaK suppressor mutations, dnaK9, reinstated a protein-protein interaction between the suppressor DnaK9 and GrpE280 proteins.  相似文献   

18.
Summary The phr gene, which encodes protein of 472 amino acid residues, is required for light-dependent photoreactivation and enhances light-independent excision repair of ultraviolet light (UV)-induced DNA damage. In this study, dodecamer HindIII linker insertions were introduced into the cloned phr gene and the functional effects of the resulting mutations on photoreactivation and light-independent dark repair in vivo were studied. Among 22 mutants obtained, 7 showed no photoreactivation as well as no enhancement of light-independent repair. Four of these were located in amino acid residues between Gln333 and Leu371 near the 3 end of the gene, two were located in a small region at Glu275 to Glu280 near the middle of the gene and the remaining one was between Pro49 and Arg50. Three mutants that had insertions located in the 42 by segment from 399 to 441 by of the phr coding sequence (corresponding to amino acid residues Ile134 to Lys149) lost the light-independent repair effect but retained photoreactivation. These results suggest that (i) Escherichia coli DNA photolyase contains several critical sites that are distributed over much of the enzyme molecule, and (ii) a functional domain required for the effect on light-independent repair is at least in part distinct from that necessary for light-dependent photoreactivation.  相似文献   

19.
The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths /=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail.  相似文献   

20.
DNA synthesis was followed in vivo and in permeable Escherichia coli after ultraviolet light irradiation, irradiation and incubation in a growth medium containing chloramphenicol and in unirradiated cells. In vitro, replicative type DNA synthesis was partially restored after incubation of cells in medium containing chloramphenicol, but not in vivo. The DNA was pulse-labeled in permeable cells in the presence of deoxyribonucleoside triphosphates and ribonucleoside triphosphates. dCTP was replaced by 5-Hg-dCTP as a substrate for DNA synthesis. Hg-DNA was separated from cellular nucleic acids on thiol-agarose affinity columns. The 5' termini of newly synthesized DNA were analyzed after treatment with alkaline phosphatase and rephosphorylation with polynucleotide kinase and [gamma-32P]ATP. DNA synthesis in unirradiated permeable E. coli represents a replicative process dependent on ATP and inhibited by novobiocin. About 70% of the nascent DNA carried terminally labeled RNA moiety at its 5' end. In vitro DNA synthesis in irradiated cells was suppressed and hardly influenced by the presence of ATP or novobiocin. The 5'-RNA content of this cell population was less than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号