首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis and presence of atrial natriuretic factor in rat ventricle   总被引:5,自引:0,他引:5  
Rat heart ventricles contained immunoreactive atrial natriuretic factor (irANF) and mRNA for ANF. The size of ANF mRNA in the ventricle was identical with that of the atria. High performance gel filtration chromatography showed that 84% of ventricular irANF elutes at a position corresponding to the low molecular weight form of ANF (99-126) and 16% of irANF elutes at a position corresponding to the precursor form of ANF. The irANF content of the ventricles of spontaneously hypertensive rats was 3 times as much as that of Wistar Kyoto rats. These results suggest that ventricle synthesizes ANF in response to hypertension and processes in a manner different from that in atria.  相似文献   

2.
Expression of atrial natriuretic factor gene in heart ventricular tissue   总被引:14,自引:0,他引:14  
A novel peptide hormone, atrial natriuretic factor (ANF), was recently isolated and characterized in mammalian atria. This hormone has potent natriuretic, diuretic and vasorelaxant activities. Since ANF bioactivity was initially found in atria but not in ventricles, it was assumed that the ANF gene is specifically expressed in atria. We now report that ANF mRNA is present in ventricular tissue as well as in atria. This is clearly demonstrated by in situ hybridization and by Northern blot analysis. Rat ventricular ANF mRNA concentration is a hundred-fold lower than in atria. As in atria, the 126 amino acids precursor form of ANF is predominant in ventricles and it is present at a thousand-fold lower concentration. The ten-fold discrepancy in the ratio of ANF mRNA to immunoreactivity between atria and ventricles could reflect a higher rate of peptide release in the latter. Thus, ventricular ANF production may be physiologically significant in view of the much larger ventricular mass.  相似文献   

3.
4.
Atrial natriuretic factor (ANF) is present in high concentration in atria but in very low concentration in the ventricles. Under conditions of haemodynamic overload ventricular gene expression may become activated, but it is not clear if ventricular ANF can be released through a regulated or constitutive pathway. The purpose of this study was to determine whether basal and stimulated release of ANF are increased in perinephritic rabbits with mild hypertension. Six rabbits were rendered hypertensive by wrapping both kidneys in cellophane, and six sham-operated rabbits were used as controls. Eight weeks after renal wrapping, mean arterial pressure was approximately 20 mmHg higher in the experimental group. After anaesthesia, the renal-wrapped group had a higher vascular resistance. Right and left atrial wall stress was measured using sonomicrometry. Volume expansion by 30% of blood volume, using donor blood, caused a small increase in right and left atrial diastolic and systolic wall stress but did not significantly increase plasma ANF. Pacing the heart at 6 Hz caused increases in systolic but not diastolic wall stress and caused a significant increase in plasma ANF; the increase was larger after volume expansion. There were no significant differences between the responses of the experimental and control groups. It is concluded that mild hypertension, in the rabbit, does not lead to changes in atrial wall stress or either basal or stimulated release of ANF.  相似文献   

5.
Atrial natriuretic factor (ANF) is a 28-amino acid peptide hormone with potent natriuretic, diuretic and vasodilator properties. Isolation and DNA sequence analysis of rat and human cDNA clones revealed that ANF is synthesized from a 126-amino acid precursor which is highly conserved in both species. Southern blot analysis indicated that the ANF gene is present in a single copy per haploid genome. Both human and rat ANF genes were isolated and showed a similar structural organization which consisted of three exons and two introns. The ANF gene was localized to the short arm of human chromosome 1 and mouse chromosome 4. While atria are the major site of expression of the ANF gene in adult heart, other tissues like ventricles, lung, anterior pituitary, hypothalamus and adrenal synthesize ANF albeit to a much lower extent. In ventricles, ANF mRNA levels are 150 times lower than in atria. However, in cardiac hypertrophy or in congestive heart failure, ventricular ANF mRNA and peptide levels are dramatically (100-fold) increased both in animal models and in humans. This suggests that ventricles are a major site of ANF gene expression in certain pathophysiological conditions and that ANF is not an exclusively atrial peptide as was originally thought.  相似文献   

6.
To determine the role of endothelin-1 (ET-1) in the upregulation of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) observed in deoxycorticosterone acetate (DOCA)-salt hypertension, the selective ET-1 type-A receptor (ET(A)) antagonist ABT-627 was chronically administered to normal controls and hypertensive rats. Chronic ET(A) blockade in DOCA-salt-treated rats prevented the increase in blood pressure and circulating natriuretic protein (NP) levels and partially prevented left ventricular hypertrophy. The changes observed in NP gene expression in the atria were not affected by ABT-627. In the ventricles, ABT-627 reduced NP gene expression. Rats receiving the ET(A) antagonist alone showed reduced left ventricular NP gene expression. ABT-627 did not affect ventricular collagen III gene expression but enhanced left ventricular alpha-myosin heavy chain expression. These findings suggest that in vivo, ventricular but not atrial NP production is regulated by ET-1. This difference in response between atrial and ventricular NP gene expression to ET(A) receptor blockade is similar to that observed by us after applying angiotensin-converting enzyme inhibitors in other hypertensive models. In general therefore, atrial NP gene expression may not be as sensitive to the endocrine environment as is ventricular NP gene expression.  相似文献   

7.
8.
We have studied the effect of synthetic rat atrial natriuretic factor (ANF) on adenylate cyclase activity in cultured cardiocytes from atria (left and right) and ventricles from neonatal rats. ANF (Arg 101-Tyr 126) inhibited adenylate cyclase activity in a concentration dependent manner in cultured atrial (right and left atria) and ventricular cells. However the inhibition was greater in atrial cells as compared to ventricular cells. The maximal inhibition observed in ventricular cells was about 35% with an apparent Ki of about 10(-10) M, whereas about 55% inhibition with an apparent Ki between 5 X 10(-10) M and 65% inhibition with an apparent Ki of 10(-9) M were observed in right and left atrial cardiocytes respectively. The inhibitory effect of ANF was dependent on the presence of guanine nucleotides. Various hormones and agents such as isoproterenol, prostaglandins, adenosine, forskolin and sodium fluoride stimulated adenylate cyclase activities to various degrees in these atrial and ventricular cardiocytes. ANF inhibited the stimulatory responses of all these agonists, however the degree of inhibition varied for each agent. In addition ANF also inhibited cAMP levels in these cells. These data indicate that ANF receptors are present in cardiocytes and are negatively coupled to adenylate cyclase.  相似文献   

9.
Distension of the atrial wall has been proposed as a signal for the increased release of atrial natriuretic factor (ANF) from atrial myocytes in response to perceived volume overload. To determine whether pressure changes resulting from hypertension in the pulmonary circulation may stimulate release of ANF, rats were exposed to chronic hypobaric hypoxia for 3 or 21 days and the ANF concentration in the atria and plasma were determined by specific radioimmunoassay. Exposure to chronic hypoxia resulted in significant increases in hematocrit at both 3 (p less than 0.025) and 21 days (p less than 0.005) and in the development of right ventricular hypertrophy (RVH) expressed as the ratio of the weight of the right ventricle to the weight of the left ventricle and septum (RV/LV+S) at both 3 (RV/LV+S = 0.278 +/- 0.005) and 21 days (RV/LV+S = 0.536 +/- 0.021). After 21 days, left atrial (LA) ANF content was significantly increased in hypoxic rats compared to controls (508 +/- 70 ng/mg tissue vs 302 +/- 37 ng/mg), while right atrial (RA) ANF content was significantly reduced (440 +/- 45 vs 601 +/- 58 ng/mg). At this time, plasma ANF concentration was significantly elevated compared to controls (238 +/- 107 pg/ml vs 101 +/- 10 pg/ml). These results suggest that the development of pulmonary hypertension following chronic hypobaric exposure induces altered atrial ANF content and increased plasma ANF concentration as a result of altered distension of the atrial wall.  相似文献   

10.
We investigated the effect of sodium chloride and adrenergic agents on the release of atrial natriuretic factor (ANF) using working heart-lung preparations from Dahl salt-hypertension sensitive (S) and Dahl salt-hypertension resistant (R) rats. High concentrations of NaCl moderately increased ANF release, but this was attributed to small increases in left atrial pressure rather than to a direct effect of NaCl on ANF release; S and R rats responded similarly. Neither isoproterenol (beta 1 + beta 2 agonist) nor clonidine (alpha 2 agonist) had any effect on ANF release in the heart-lung preparation. In contrast, phenylephrine (alpha 1 agonist) stimulated ANF release. This could not be accounted for by change in atrial pressure and appeared to be a direct effect. S and R rats both released ANF in response to phenylephrine, but there was a modest tendency for hypertensive S rats to release more ANF than normotensive R rats, which is consistent with previous data on mechanically induced (atrial stretch) ANF release in these strains.  相似文献   

11.
We have validated a quantitative 'in-situ' hybridization method and computer-assisted image analysis of autoradiographs as a technique for measuring atrial-natriuretic-factor (ANF) mRNA in tissue sections of rat heart by: (i) producing radioactive standards to calibrate the autoradiograms and (ii) assessing: (a) specificity (through RNAase A background subtraction, comparison of ANF mRNA and non-ANF mRNA probe binding to sections, Northern analysis and section-thickness titration curves); (b) sensitivity (by calculating the limit of detection for ventricular levels of ANF mRNA); (c) precision [inter-assay CV (coefficient of variation) less than 10%; intra-assay CV 6-7%]; and (d) accuracy. We have found with this technique that deoxycortone and saline treatment of rats elevates ANF mRNA to a larger extent in the ventricles than in the atria and that, in neonatal-rat hearts, ANF mRNA is elevated in all cardiac chambers relative to adult levels.  相似文献   

12.
Summary An immunohistochemical study of rat fetal hearts at 20 days of gestation revealed the presence of immunoreactive atrial natriuretic factor (ANF) in cardiocytes of the left and right atria as well as in certain cells is the left and right ventricles. In the atria, cells of the adluminal pectinate muscles appear more densely labeled than the more peripheral mural cells. In the ventricles, immunoreactive cells were found only in adluminal cardiocytes of the presumptive trabeculae and papillary muscles. The results indicate that ANF is synthesized in the perinatal heart, and that the presence of this hormone in the ventricular cardiocytes may be of only temporary nature during certain stages of pre- and postnatal development.Supported by Miami Valley Chapter of American Heart Association MVH-86-019 and MVH-86-010  相似文献   

13.
14.
Atrial natriuretic peptide (ANP) is a newly discovered peptide hormone present mainly in the atria. We investigated the occurrence and distribution of ANP immunoreactivity in the myocardiocytes of the ventricles of spontaneously hypertensive rats by use of immunocytochemistry at both light and electron microscopic level. ANP immunoreactivity was found in the specific granules in the cytoplasm of the cardiocytes in the subendocardium and the myocardium of the ventricles, as well as in the atria. The specific granules found in the ventricles of hypertensive rats were similar in size, shape, and ANP immunoreactive content to those in the atria. The abundance of ANP immunoreactivity in the left ventricle is greater than that in the right, and appears to increase with increasing severity of hypertension. Conversely, the overall content of ANP in the atria of hypertensive rats was decreased when compared with that in age-matched normotensive rats. The present findings indicate that ventricles may become a major source for ANP synthesis and release during hypertension, and may play important roles in cardiac endocrine pathology and cardiac hypertrophy.  相似文献   

15.
The expression of adrenomedullin (AM) and atrial natriuretic factor (ANF) were investigated in the myocardium of a rat model of chronic ischemic heart failure (CHF) compared with sham-operated controls. In addition, human myocardium of patients with end-stage heart failure due to idiopathic dilated cardiomyopathy compared with myocardium of normal subjects (NF) was studied. In CHF, similar AM levels but increased ANF expression were observed in left ventricular myocardium, as assessed by semiquantitative PCR. Functional experiments with freshly excised papillary muscles showed no influence of AM on myocardial contractility. In NF human myocardium, the expression of AM mRNA was threefold higher in atrial compared with ventricular tissue. In analogy, ANF mRNA was increased by approximately 15-fold in atrial tissue. In dilated cardiomyopathy, the expression of AM was significantly increased in right and left ventricles compared with NF. In parallel, ventricular ANF expression was enhanced.  相似文献   

16.
Since previous investigations have suggested a relationship between atrial natriuretic factor (ANF) and dopamine-beta-hydroxylation, cardiomyopathic hamsters were studied for atrial and ventricular catecholamine (CA) and dopamine-beta-hydroxylase (D beta H) content as correlates to a parallel finding of markedly decreased atrial but increased ventricular ANF concentrations in these animals. It was noted that, with progressive cardiomyopathy, the reduced tissue norepinephrine (NE) content paralleled the declining D beta H activity in the atria. In the ventricles, however, the progressively-decreasing NE content was associated with an increase of D beta H. These data indicate that the NE depletion is mediated by different mechanisms in the ventricles and atria. They do not support a simple relationship between NE depletion and tissue D beta H activity or between the latter and tissue ANF concentrations.  相似文献   

17.
In order to assess possible roles of atrial natriuretic factor (ANF) in spontaneously hypertensive rats (SHR), we examined the content of immunoreactive-ANF in plasma, the atria, hypothalamus and pons of SHR and Wister Kyoto (WKY) rats by radioimmunoassay at different stages of age. With the progression of hypertension, plasma concentration of ANF increased whereas it decreased in the atria in SHR. This suggests ANF is secreted in response to hypertension. On the other hand, at hypothalamus and pons, ANF content was significantly higher in SHR than in WKY rats. This finding suggests possible involvement of ANF in the central regulation of blood pressure.  相似文献   

18.
We have compared atrial and plasma concentration of atrial natriuretic factor (ANF) in 4 models of non spontaneous experimental hypertension with different pathogenic mechanisms in the rat: two-kidney, one-clip (2-K, 1-C), one-kidney, one-clip (1-K, 1-C), DOCA-NaCl and adrenal regeneration hypertension (ARH) and their respective normotensive controls. All hypertensive groups developed cardiac hypertrophy. In all hypertensive groups plasma ANF was higher than in controls. Atrial ANF concentration was lower in the right and left atrium of 1-K, 1-C rats and in the left atrium of ARH. A good correlation was found between systolic BP and plasma ANF in 2-K, 1-C (r = 0.82; p less than 0.01) and 1-K, 1-C animals (r = 0.70; p less than 0.01). This correlation was less good in DOCA-NaCl (r = 0.41; p less than 0.05) and non existent in ARH (r = 0.28; NS). A negative correlation between plasma ANF and atrial ANF concentrations was found only in the 1-K, 1-C group (r = 0.41; p less than 0.05). A good correlation between plasma ANF levels and cardiac weight was found in all groups: 2-K, 1-C (r = 0.83; p less than 0.01), 1-K, 1-C (r = 0.73; p less than 0.01), DOCA-NaCl (r = 0.69; p less than 0.01) and ARH (r = 0.71; p less than 0.01). We suggest that the release of ANF in experimental hypertension depends of the pathogenesis and could be related either to the level of BP (hence the magnitude of the left ventricular end-diastolic pressure) or to the existence of an expanded blood volume. The correlation between plasma ANF levels and cardiac hypertrophy suggests that ANF could be partially released by the ventricles.  相似文献   

19.
We investigated the effect of long-term in vivo blockade of the ET-1 receptor subtype B (ET(B)) with A-192621, a selective ET(B) antagonist, on atrial and ventricular natriuretic peptide (NP) gene expression in deoxycorticosterone acetate (DOCA)-salt hypertension. In this model, stimulation of the cardiac natriuretic peptide (NP) and the endothelin system and suppression of the renin-angiotensin system is observed. DOCA-salt induced significant hypertension, cardiac hypertrophy and increased NP plasma and left atrial and right and left ventricular NP gene expression. ET(B) blockade per se produced hypertension and left ventricular hypertrophy but induced little change on the levels of ventricular NP and only increased left atrial natriuretic factor (ANF) mRNA levels. Combined ET(B) blockade/DOCA-salt treatment worsened hypertension, increased left ventricular hypertrophy and induced right ventricular hypertrophy. All animals so treated had increased ventricular NP gene expression. Collagen III and beta-myosin heavy chain gene expression were enhanced in both the right and the left ventricle of DOCA-salt hypertensive rats. The results of this study suggest that the ET(B) receptor does not participate directly in the modulation of atrial or ventricular NP gene expression and that this receptor mediates a protective cardiovascular function. ET(B) blockade can induce significant ventricular hypertrophy without an increase in ANF or brain NP gene expression.  相似文献   

20.
Phenylethanolamine N-methyltransferase (PNMT) is the enzyme that synthesizes epinephrine from norepinephrine. The aim of this study was to determine potential PNMT gene expression in the cardiac atria and ventricles of adult rats and to examine whether the gene expression of this enzyme is affected by immobilization stress. PNMT mRNA levels were detected in all four parts of the heart, with the highest level in the left atrium. Both Southern blot and sequencing verified the specificity of PNMT detected by RT-PCR. Single immobilization for 2 h increased gene expression of PNMT in both atria and ventricles. In atria, this effect was clearly modulated by glucocorticoids, because either adrenalectomy or hypophysectomy prevented the increase in PNMT mRNA levels in response to immobilization stimulus. This study establishes, for the first time, that PNMT gene expression occurs in cardiac atria and also, to a small extent, in ventricles of adult rats. Immobilization stress increases gene expression in atria and ventricles. This increase requires an intact hypothalamus-pituitary-adrenocortical axis, indicating the involvement of glucocorticoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号