首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of plasmolysis and spheroplast formation on deoxyribonucleic acid (DNA), ribonucleic acid (RNA), protein, and phospholipid synthesis by Escherichia coli strain THU were studied. RNA and protein synthesis were severely diminished. DNA and phospholipid synthesis were inhibited, but less so; they could be partly restored. DNA synthesis could be restored by replacing thymine in the medium with thymidine, and phospholipid synthesis, by adding back small quantities of soluble cell extract. Plasmolysis effected marked reductions in rates of growth and macro-molecule synthesis, and temporarily reduced culture viability. Plasmolysis also caused an anomalous stimulation of phospholipid synthesis. Spheroplasts and plasmolyzed cells synthesized small amounts of ribosomal RNA that sedimented normally. However, this ribosomal RNA was very inefficiently packaged to ribosome subunits. Spheroplasts were unable to carry out induced synthesis of beta-galactosidase, and plasmolyzed cells were delayed in this function. Radioautographs examined in an electron microscope showed that DNA synthesis in plasmolyzed cells and spheroplasts was performed by a substantial fraction of the culture populations. That DNA and membrane were associated in the spheroplasts used in this study was suggested by formation of M-bands containing membrane and most of the cell's DNA. The results are discussed in terms of alterations of membrane structure and conformation attending plasmolysis and spheroplasting.  相似文献   

2.
Osmotically shocked spheroplasts obtained from Pseudomonas schuylkilliensis strain P contained about 54, 32, 28, and 82% of the total cellular protein, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and phospholipid, respectively. This preparation was capable of incorporating (32)P-orthophosphate into RNA and DNA, (3)H-adenosine or (3)H-uridine into RNA, and (3)H-leucine or (14)C-phenylalanine into protein. These activities were not found in the cytoplasmic fraction which contained most of the glucose-6-phosphate dehydrogenase activity. The synthesis of RNA by intact and disrupted spheroplast preparations was sensitive to actinomycin D, chromomycin A(3), streptovaricin, rifampin, Lubrol W, Triton X-100, and sodium deoxycholate, whereas RNA synthesis by intact cells was insensitive to these agents. Ethylenediaminetetraacetic acid, porcine pancreatic lipase, the protoplast-bursting factor, high concentrations of salts, and washing the preparation inhibited the synthesis of RNA by disrupted spheroplasts but had little or no effect on intact spheroplasts. Most of the newly synthesized RNA made by disrupted spheroplasts had the characteristics of messenger RNA. The DNA present in this preparation functioned as a template for RNA synthesis; continued protein synthesis was dependent on concomitant RNA synthesis. An unusual feature of the preparation was the finding that the synthesis of macromolecules was completely dependent on oxidative phosphorylation.  相似文献   

3.
The amino acid regulation of RNA synthesis inLactobacillus acidophilus was studied and found to be of stringent character. The synthesis of RNA was inhibited in the absence of essential amino acids in the medium, this inhibition being released by chloramphenicol or chlortetracycline. The RNA synthesized in the presence of the above inhibitors was not stable. The results do not support the hypothesis that the release of RNA synthesis by chloramphenicol is due to an increased pool of free amino acids, in consequence to the inhibition of protein synthesis. Chloramphenicol removed the inhibition of RNA synthesis at the same rate as the amino acids themselves. The pool of free leucine or histidine decreased to 60% in the absence of exogenous amino acids and it was not raised on adding chloramphenicol. The results are in agreement with the assumption that the synthesis of ribosomal RNA in bacteria is controlled by the equilibrium between polysomes and free ribosomes. Further, the results point to a possible limiting role of proteins in the regulation of ribosomal RNA synthesis.  相似文献   

4.
5.
Synthesis of viral ribonucleic acid (RNA) polymerase, maturation protein, and coat protein in Escherichia coli infected with bacteriophage R17 occurs mainly on polysomes containing four or more ribosomes. The 30S ribosomal subunits through trimer-size polysomes, which are associated with all of the R17-specific proteins and are predominant in the infected cell, synthesize only coat protein. These structures may accumulate as products derived from larger polysomes as a result of failure in the release of nascent polypeptides after termination of chain growth. Appreciable amounts of viral coat protein remain attached to ribosomes and polysomes during R17 bacteriophage replication, supporting the hypothesis of the repressor role of this protein. The time course of synthesis of virus-specific proteins obtained from the polysomes of infected cells demonstrated regulated R17 messenger RNA translation consistent with the idea that coat protein is preferentially synthesized whereas the synthesis of noncoat proteins is suppressed.  相似文献   

6.
A cell-free protein-synthesizing system has been prepared from Saccharomyces cerevisiae by differential centrifugation of lysed spheroplasts. The preparation, a modified 100,000 x g supernatant fraction, contains ribosomes and monosomes, ribosomal subunits, translation factors, and aminoacyl-tRNA synthetases, but no polysomes. After removal of small amounts of remaining mRNA with micrococcal nuclease, protein synthesis is stringently dependent on the addition of mRNA, as well as amino acids and an energy-generating system. The 5'-cap analogue, 7-methylguanosine 5'-phosphate, inhibits translation of several natural mRNAs, but has no effect on chain elongation. Incubation of the polysome-free extract with natural mRNA leads to the formation of protein-synthesizing polysomes and eventually, to the release of protein; the molecular weight of the protein synthesized in the presence of BMV (brome mosaic virus) RNA is consistent with that of BMV coat protein.  相似文献   

7.
Looking for messenger RNA coding for yeast ribosomal protein, we devised a method to identify polysomes involved in ribosomal protein synthesis. Analysis of nascent protein elongated in vitro demonstrated that ribosomal proteins are synthesized both on membrane-associated and free polysomes.  相似文献   

8.
9.
A new technique using Sepharose 4B column chromatography for the partial purification of the total messenger RNA population of several animal tissues is described. The column when eluted with 0.1M sodium acetate, pH 5.0, containing. 001M EDTA, resolves a total nucleic acid extract into four major peaks. DNA is eluted at the void volume, followed successively by peaks of 18S ribosomal RNA, 4S transfer RNA and 28S ribosomal RNA. Ribonucleic acid containing mRNA activities is eluted after the DNA peak but immediately before the 18S rRNA peak. Hence the column enables quantitative removal of DNA, 5S RNA, tRNA and 28S rRNA from the majority of total cellular mRNA's. Partial segregation of mRNA's in the column is also demonstrated. The method does not require the isolation of polysomes as the initial procedure in mRNA isolation and is readily adaptable to large scale preparations. One hundred mg of total nucleic acid extracted from whole tissues can be fractionated on a 5 × 100 cm Sepharose 4B column. Recovery of total mRNA activities ranges between 60–70% and purification with respect to the total cell extract is 7 to 8 fold.  相似文献   

10.
Summary From Escherichia coli, DNA-membrane-complexes have been isolated which contain about 40% of the ribosomes, about 95% of the DNA and nearly all of the nascent RNA. The kinetic data on pulse labeled RNA show an average time of turnover of about 60 sec both for nascent messenger- and nascent ribosomal RNA. A proportion of the polysomes with nascent messenger RNA as well as most of the nascent ribosomal RNA is found in association with membranes, as has been shown by subfractionations of the DNA-membrane-complex involving treatment with DNase and desoxycholate. In this early transient stage, ribosomal precursor RNA already acquires some ribosomal proteins, as has been shown by arginine pulse label. Data on partial release of DNA from the DNA-membrane-complex by treatment with extremely low doses of DNase indicate that messenger RNA synthesis occurs in clusters on the DNA.The results support models in which, at any given time, RNA synthesis proceeds mainly in sections of the DNA close to the membrane. Thereby the DNA is linked to the membrane via nascent RNA contained in ribosomal precursors as well as via nascent messenger RNA on membrane-bound polysomes.  相似文献   

11.
12.
During the initial ten hours of growth in lymphocytes stimulated by phytohemagglutinin, the cells are converted from a state in which over 70% of all ribosomes are inactive free ribosomes, to one in which over 80% of ribosomes are in polysomes or in native ribosomal subunits. In this initial period, there was a neglible increase in total ribosomal RNA due to increased RNA synthesis, and abolition of ribosomal RNA synthesis with low concentrations of actinomycin D did not interfere with polysome formation. Therefore, the conversion is accomplished by the activation of existing free ribosomes rather than by accumulation of newly synthesized particles. The large free ribosome pool of resting lymphocytes is thus an essential source of components for accelerated protein synthesis early in lymphocyte activation, before increased synthesis can provide a sufficient number of new ribosomes. Free ribosomes accumulate once more after 24 to 48 hours of growth, when RNA and DNA synthetic activity are maximal. This reaccumulation of inactive ribosomes at the peak of growth activity may represent preparation for a return to the resting state where cells are again susceptible to stimulation. Activation of free ribosomes to form polysomes appears to involve modification of at least two steps: (a) dissociation of free ribosomes with stabilization as native subunits, and (b) adjustment of a rate-limiting step at initiation.  相似文献   

13.
Regulation of Ribosomal Protein Synthesis in Escherichia coli   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

14.
The eIF-2A fraction of reticulocyte ribosomal salt wash is capable of maximally stimulating the translation of endogenous messenger RNA by hen oviduct polysomes. The factor increases the initiation of protein synthesis 2--3-fold when measured by the factor-dependent synthesis of NH2-terminal peptides. The addition to these polysomes of elongation factor, EF-1, also increases protein synthesis but at a distinctly different rate and Mg2+ concentration optimum than the eIF-2A fraction. Moreover, there is no stimulation of NH2-terminal peptide synthesis with EF-1 alone. In contrast, all the known initiation factors are required for the translation of exogenous globulin mRNA on oviduct polysomes. Reticulocyte polysomes isolated by an identical procedure to that used for oviduct polysomes or by standard methods also require all the initiation factors for the translation of either endogenous mRNA or exogenous ovalbumin mRNA. Addition of 7-methylguanosine 5'-monophosphate does not inhibit the factor-dependent stimulation of oviduct polysomes except at high concentrations (1.0 mM) indicating that the sites with which 7-methylguanosine 5'-monophosphate normally competes are already occupied. These findings suggest that the messenger RNA remains bound to the oviduct polysomes or initiation factors. Hence the addition of exogenous factors which are involved with mRNA recognition and binding to the ribosome are not required. It has been previously shown that eIF-2A is capable of binding in vitro the initiatior tRNA to an existing Ado-Urd-Gua-40 S complex and initiating protein synthesis when such a complex is present. These present studies indicate that such an initiation complex may exist within the oviduct cell on membrane-associated polysomes. Under these circumstances eIF-2A mediates binding of the initiator tRNA and initiates protein synthesis.  相似文献   

15.
16.
The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel+ and rel- cells, under valyltRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer to the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel+ strain appear more labelled than those from the rel- strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene.  相似文献   

17.
Lymphocyte stimulation by phytohaemagglutinin (PHA) is accompanied by marked increases in the activities of ornithine decarboxylase and S-adenosyl methionine decarboxylase, two key enzymes for the synthesis of polyamines. Both enzymes increase in a biphasic manner, with the rises in S-adenosyl methionine decarboxylase preceding the increases in ornithine decarboxylase. The initial rises precede the initiation of DNA synthesis, and seem to correlate with the increased rate of ribosomal RNA synthesis. Selective inhibition of ribosomal RNA synthesis inhibits the increases in the activity of both enzymes, especially ornithine decarboxylase, more than the increase in the overall rate of protein synthesis.Both enzymes are metabolically unstable and have half-lives of less than 1 h, although the half-life of ornithine decarboxylase depends on the amino acid concentration in the culture medium. While effects of PHA on the stability of the enzymes have not been ruled out, at least part of the PHA-dependent increases in activity are due to increased synthesis or activation of the enzymes. The synthesis of S-adenosyl-methionine decarboxylase declines rapidly after inhibition of RNA synthesis, but ornithine decarboxylase activity declines at about the same rate as protein synthesis as a whole.The activities of both enzymes also increase during lymphocyte stimulation by concanavalin A, lentil extract and staphylococcal filtrate.  相似文献   

18.
19.
Diphtheria toxin kills spheroplasts of Saccharomyces cerevisiae but not the intact yeast cells. After 2 h of exposure to ca. 10(-7) M toxin, less than 1% of spheroplasts were able to regenerate into intact cells. The same high levels of toxin inhibited the rate of protein synthesis by more than 90% within 1 h, whereas RNA and DNA synthesis were not inhibited until 4 h or exposure. Both killing and protein synthesis inhibition were dependent on toxin concentration. The nature of the toxin-cell interaction was also studied by using fragments of intact toxin and mutant toxin proteins. Neither toxin fragment A nor CRM45 nor CRM197 affected spheroplasts, but CRM197 and ATP prevented the inhibitory action of intact toxin. These results suggest that toxin acts on S. cerevisiae spheroplasts in much the same manner as it acts on sensitive mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号