首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HLA-B27 has a striking association with inflammatory arthritis. We show that free HLA-B27 heavy chains can form a disulfide-bonded homodimer, dependent on residue Cys67 in their extracellular alpha 1 domain. Despite the absence of beta 2-microglobulin, HLA-B27 heavy chain homodimers (termed HC-B27) were stabilized by a known peptide epitope. HC-B27 complexes were recognized by the conformation-specific Ab W6/32, but not the ME1 Ab. Surface labeling and immunoprecipitation demonstrated the presence of similar W6/32-reactive free heavy chains at the surface of HLA-B27-transfected T2 cells. HC-B27 homodimer formation might explain the ability of HLA-B27 to induce spondyloarthropathy in beta 2-microglobulin-deficient mice.  相似文献   

2.
As an MHC class I protein, the disease association of HLA-B27 with inflammatory arthritis has been widely assumed to imply a role for the T cell antigen receptor (TCR) in disease. However, in addition to their classical antigen-presenting role, HLA class I proteins are recognised by members of the killer immunoglobulin receptor (KIR) and leukocyte immunoglobulin-like receptor (LILR/ILT/LIR) families. Unusual properties of HLA-B27 include an ability of free heavy chains (FHC) to reach the cell surface in the absence of beta2m and to maintain their peptide-binding groove in vitro. This review describes immunomodulatory receptors that recognise HLA class I, and the recognition of HLA-B27 in both the classical beta2m-associated and beta2m-independent forms by members of the KIR and LILR families. Alternative recognition of different forms of HLA-B27 by leukocyte receptors could influence the function of cells from both innate and adaptive immune systems, and may indicate a role for various leukocyte populations in HLA-B27-associated inflammatory disease.  相似文献   

3.
To test the hypothesis that HLA-B27 predisposes to disease by forming disulfide-linked homodimers, we examined rats transgenic for HLA-B27, mutant Cys(67)Ser HLA-B27, or HLA-B7. In splenic Con A blasts from high transgene copy B27 lines that develop inflammatory disease, the anti-H chain mAb HC10 precipitated four bands of molecular mass 78-105 kDa and additional higher molecular mass material, seen by nonreducing SDS-PAGE. Upon reduction, all except one 78-kDa band resolved to 44 kDa, the size of the H chain monomer. The 78-kDa band was found to be BiP/Grp78, and the other high molecular mass material was identified as B27 H chain. Analysis of a disease-resistant low copy B27 line showed qualitatively similar high molecular mass bands that were less abundant relative to H chain monomer. Disease-prone rats with a Cys(67)Ser B27 mutant showed B27 H chain bands at 95 and 115 kDa and a BiP band at 78 kDa, whereas only scant high molecular mass bands were found in cells from control HLA-B7 rats. (125)I-surface labeled B27 oligomers were immunoprecipitated with HC10, but not with a mAb to folded B27-beta(2)-microglobulin-peptide complexes. Immunoprecipitation of BiP with anti-BiP Abs coprecipitated B27 H chain multimers. Folding and maturation of B27 were slow compared with B7. These data indicate that disulfide-linked intracellular H chain complexes are more prone to form and bind BiP in disease-prone wild-type B27 and B27-C67S rats than in disease-resistant HLA-B7 rats. The data support the hypothesis that accumulation of misfolded B27 participates in the pathogenesis of B27-associated disease.  相似文献   

4.
We designed a set of 35 polymerase chain reaction sequence-specific primers (PCR-SSP) in 29 SSP mixtures to assign 29 HLA-B*27 4-digit level alleles (B*2701-B*2721 and B*2723-B*2730). This was used in conjunction with our 41 PCR-SSP primer mixture low-resolution HLA-B typing set to fully differentiate B*27 from all other HLA-B alleles. Successful typing set validation used 521 B*27 samples covering 13 (B*2701-B*2710 and B*2712, B*2717, B*2723) alleles. The distribution of B*27 alleles was determined in a random population of 4020 local blood donors and the use of PCR-SSP B*27 typing in our routine flow cytometry-based HLA-B27/B2708 typing strategy is described.  相似文献   

5.
By substituting the heavy chain constant region of IgM and IgD with that of IgG, IgA or IgE, immunoglobulin class switching endows antibodies with novel effector functions that enhance the ability of the immune system to effectively clear invading pathogens. Plasmacytoid dendritic cells critically link innate immunity with adaptive immunity by producing massive amounts of type 1 IFN in response to viruses. We have recently found that type 1 IFN triggers class switching by inducing myeloid dendritic cells to upregulate the expression of BAFF and APRIL, two powerful B cell-activating molecules. In this paper, we propose that IFN-producing plasmacytoid dendritic cells modulate class switching by activating B cells through both T cell-dependent and T cell-independent pathways. A better understanding of these pathways may facilitate the development of novel antiviral vaccine strategies and aid in identifying new therapies for antibody-mediated autoimmune disorders, such as lupus.  相似文献   

6.
Transplants tolerated through a process known as infectious tolerance evoke continuous recruitment of regulatory T (Treg) cells that are necessary to maintain the unresponsive state. This state is maintained long-term and requires continuous Ag exposure. It is not known, however, whether infectious tolerance operates through sustained recruitment of pre-existing regulatory cells, induction of regulatory cells, or both. Using mice deficient in natural Treg cells, we show here that quiescent donor dendritic cells (DC) laden with histocompatibility Ag can induce Treg cells de novo that mediate transplantation tolerance. In contrast, fully activated DC fail to do so. These findings suggest that DC incapable of delivering full activation signals to naive T cells may favor their polarization toward a regulatory phenotype. Furthermore, they suggest a role for quiescent endogenous DC in the maintenance of the tolerant state.  相似文献   

7.
The specificity of peptide binding by human leukocyte antigen (HLA) class I molecules was investigated in a cell-free direct-binding assay. Peptides were assessed for binding to HLA-A2 and HLA-B27 by measuring the formation of heterotrimeric HLA complexes that consisted of iodinated beta 2-microglobulin, HLA heavy chain fragments isolated from the Escherichia coli cytoplasm, and peptide. In this system, no detectable HLA heavy chain-beta 2-microglobulin complexes were formed unless appropriate peptides were intentionally added to the reconstitution solution. Analysis with monoclonal antibodies demonstrated that these heterotrimeric complexes were correctly folded. Five nonhomologous peptides, known to form complexes with HLA-A2 or HLA-B27 from T-cell functional studies, were tested for their capacity to bind to HLA-A2 and HLA-B27 using the reconstitution assay. Four of the peptides bound to the appropriate class I molecule only. One peptide and some (but not all) substitution analogs of it bound to both HLA-A2 and HLA-B27. The effect of peptide length on binding to HLA-B27 was studied, and it was found that the optimal length was 9 or 10 amino acid residues; however, one peptide that bound to HLA-B27 was 15 amino acids long. All peptides that bound to HLA-B27 in the direct-binding assay also competed with antigenic peptides for binding to HLA-B27 on the surface of intact cells, as determined by a standard cytotoxic T-lymphocyte functional assay. Thus, we conclude that HLA-A2 and HLA-B27 bind distinct but partially overlapping sets of peptides and that, at least in vitro, the assembly of HLA heavy chain-beta 2-microglobulin complexes requires specific peptides.  相似文献   

8.
Podosomes, important structures for adhesion and extracellular matrix degradation, are claimed to be involved in cell migration. In addition, podosomes are also reported to be of importance in tissue remodelling, e.g., in osteoclast-mediated bone resorption. Podosomes are highly dynamic actin-filament scaffolds onto which proteins important for their function, such as matrix metallo-proteases and integrins, attach. The dynamics of the podosomes require the action of many proteins regulating actin assembly and disassembly. One such protein, gelsolin, which associates to podosomes, has been reported to be important for podosome formation and function in osteoclasts. However, podosome-like structures have been reported in gelsolin-deficient dendritic cells, but the identity of these structures was not confirmed, and their dynamics and function was not investigated. Like many other cells, dendritic cells of the immune system also form matrix degrading podosomes. In the present study, we show that dendritic cells form podosomes independently of gelsolin, that there are no major alterations in their dynamics of formation and disassembly, and that they exhibit matrix-degrading function. Furthermore, we found that gelsolin is not required for TLR4-induced podosome disassembly. Thus, the actin cytoskeleton of podosomes involved in dendritic cell extracellular matrix degradation appears to be regulated differently than the cytoskeleton in podosomes of osteoclasts mediating bone resorption.  相似文献   

9.

Objectives

HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders.

Methods

The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry.

Results

HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules.

Conclusion

HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.  相似文献   

10.
Immunochemical variants of HLA-B27   总被引:2,自引:0,他引:2  
Detailed study of HLA-B27 was prompted by the extremely strong associations between this antigen and spondyloarthropathies. Despite the relative homogeneity of this antigen when defined by alloantisera, B27 reactivity with the monoclonal antibody B27M2 suggests previously unrecognized heterogeneity. To define and confirm this heterogeneity on a molecular level, detergent extracts were prepared from B cell lines derived from individuals reactive (+) or unreactive (-) with the B27M2 antibody. Extracts were immunoprecipitated by specific allogeneic or monoclonal antibodies and analyzed by two-dimensional polyacrylamide gel electrophoresis. By this method the B27M2+ and B27M2- variants of HLA-B27 had different isoelectric points (pl) and could be distinguished from each other and from a different (Bw44) control alloantigen. Blockade of glycosylation by pretreatment of cells with tunicamycin did not alter pl but did reduce HLA antigens by approximately 3000 daltons. These data demonstrate that B27 antigens can be subdivided into subsets with different molecular composition. The effects of this heterogeneity upon the associations of B27 and disease are not yet known.  相似文献   

11.
Due to chronic morbidity, the risk of increasing drug resistance and the existence of the hypnozoite stage in Plasmodium vivax malaria, there is a need to find out how hosts develop immunity to compromise the malaria parasites. Here we focused on an in vitro model for immunotherapy and vaccine development. Immunosuppressive mechanisms in malaria include inhibition of T cell response and suppression of dendritic cell function. Using in vitro activation of lymphocytes by malaria antigen-pulsed dendritic cells could overcome the limitation of antigen presentation during acute infections. Here we showed that the sporozoite-pulsed dendritic cell could elicit cytotoxicity against liver stage of P. vivax. Analysis using immunophenotypic markers showed maturation of the dendritic cells and stimulation of cytotoxic T cells. Functional assay of the in vitro-activated cytotoxic T cells showed enhancement of specific killing of the P. vivax exoerythrocytic stages within infected hepatocytes. This model may be useful for vaccine development against human malaria.  相似文献   

12.
The induction of resistance to 6-thioguanine by heavy ion exposure was investigated with various accelerated ions (oxygen-uranium) up to linear energy transfer (LET) values of about 15000 keV/µm.31 y Survival curves are exponential with fluence; mutation induction shows a linear dependence. Cross-sections (i: inactivation, m: mutation) were derived from the respective slopes. Generally, i rises over the whole LET range, but separateas into different declining curves for single ions with LET values above 200 keV/µm. Similar behaviour is seen for m. The new SIS facility at GSI, Darmstadt, makes it possible to study the effects of ions with the same LET but very different energies and track structures. Experiments using nickel and oxygen ions (up to 400 MeV/u) showed that inactivation cross-sections do not depend very much on track structure, i.e. similar values are found with different ions at the same LET. This is not the case for mutation induction, where very energetic ions display considerably smaller induction cross-sections compared with low-energy ions of identical LET. Preliminary analyses using the polymerase chain reaction (PCR) demonstrate that even heavy ions cause small alterations (small deletions or base changes). The proportion of the total deletions seems to increase with LET.Submitted paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

13.
We have translated major histocompatibility complex (MHC) class I heavy chains and human beta 2-microglobulin in vitro in the presence of microsomal membranes and a peptide from the nucleoprotein of influenza A. This peptide stimulates assembly of HLA-B27 heavy chain and beta 2-microglobulin about fivefold. By modifying this peptide to contain biotin at its amino terminus, we could precipitate HLA-B27 heavy chains with immobilized streptavidin, thereby directly demonstrating class I heavy chain-peptide association under close to physiological conditions. The biotin-modified peptide stimulates assembly to the same extent as the unmodified peptide. Both peptides bind to the same site on the HLA-B27 molecule. Immediately after synthesis of the HLA-B27 heavy chain has been completed, it assembles with beta 2-microglobulin and peptide. These interactions occur in the lumen of the microsomes (endoplasmic reticulum), demonstrating that the peptide must cross the microsomal membrane in order to promote assembly. The transfer of peptide across the microsomal membrane is a rapid process, as peptide binding to heavy chain-beta 2-microglobulin complexes is observed in less than 1 min after addition of peptide. By using microsomes deficient of beta 2-microglobulin (from Daudi cells), we find a strict requirement of beta 2-microglobulin for detection of peptide interaction with the MHC class I heavy chain. Furthermore, we show that heavy chain interaction with beta 2-microglobulin is likely to precede peptide binding. Biotin-modified peptides are likely to become a valuable tool in studying MHC antigen interaction and assembly.  相似文献   

14.
L cells expressing human HLA-A2 or HLA-B7 class I antigen heavy chains are not recognized by human cytotoxic T lymphocytes directed at HLA-A2 or HLA-B7 antigens. To test whether the absence of human beta 2-m was the cause of the lack of recognition by the human cytotoxic T lymphocytes, coexpression of the human beta 2-m gene and the HLA-A2 or HLA-B7 heavy chain in L cells ("double transfectants") was obtained. In addition, L cells expressing HLA-A2 or HLA-B7 antigens in association with human beta 2-m were obtained by an exchange reaction, in which human beta 2-m from serum replaced the endogenous murine beta 2-m. Both types of transfectant cells were used in 51Cr-release assays and cold target inhibition assays for human cytotoxic T cell clones which were directed at HLA-A2 or HLA-B7. Neither human CTL clones nor a mixture of CTL specific for HLA-A2 and HLA-B7 were able to recognize these cells. Several alternative explanations for these observations are discussed.  相似文献   

15.
The mechanism by which the MHC class I allele, HLA-B27, contributes to spondyloarthritis pathogenesis is unknown. In contrast to other alleles that have been examined, HLA-B27 has a tendency to form high m.w. disulfide-linked H chain complexes in the endoplasmic reticulum (ER), bind the ER chaperone BiP/Grp78, and undergo ER-associated degradation. These aberrant characteristics have provided biochemical evidence that HLA-B27 is prone to misfold. Recently, similar biochemical characteristics of HLA-B27 were reported in cells from HLA-B27/human beta2-microglobulin transgenic (HLA-B27 transgenic) rats, an animal model of spondyloarthritis, and correlated with disease susceptibility. In this study, we demonstrate that the unfolded protein response (UPR) is activated in macrophages derived from the bone marrow of HLA-B27 transgenic rats with inflammatory disease. Microarray analysis of these cells also reveals an IFN response signature. In contrast, macrophages derived from premorbid rats do not exhibit a strong UPR or evidence of IFN exposure. Activation of macrophages from premorbid HLA-B27 transgenic rats with IFN-gamma increases HLA-B27 expression and leads to UPR induction, while no UPR is seen in cells from nondisease-prone HLA-B7 transgenic or wild-type (nontransgenic) animals. This is the first demonstration, to our knowledge, that HLA-B27 misfolding is associated with ER stress that results in activation of the UPR. These observations link HLA-B27 expression with biological effects that are independent of immunological recognition, but nevertheless may play an important role in the pathogenesis of inflammatory diseases associated with this MHC class I allele.  相似文献   

16.
17.
The role of HLA-B27 in spondyloarthritis   总被引:6,自引:0,他引:6  
 The human major histocompatibility complex (MHC) class I allele HLA-B27 bears a striking association with the spondylolarthritic group of inflammatory arthritides, yet despite extensive studies its role in the disease process remains obscure. As an MHC class I protein, the primary function of HLA-B27 is to complex with β2-microglobulin forming a structure that presents short antigenic peptides for recognition by cytotoxic T lymphocytes (CTL). It has been proposed that the role of HLA-B27 in spondyloarthropathy involves this process of antigen presentation, and of the numerous theories proposed to explain the association, the most popular have involved the binding and presentation of "arthritogenic" peptides. Transgenic rodent studies directly implicate HLA-B27 heavy chains in disease pathogenesis, but suggest that the mechanism may be distinct from their primary function. The recent demonstration that HLA-B27 heavy chains can form stable homodimers may thus be of relevance. This review summarizes the evidence supporting current theories of disease association and proposes an alternative model of disease based on recent findings.  相似文献   

18.
Presenilin-1 (PS1) is a multipass transmembrane domain protein, which is believed to be the catalytic component of the gamma-secretase complex. The complex is comprised of four major components: PS1, nicastrin, Aph-1, and Pen-2. The exact stoichiometric relationship between the four components remains unclear. It has been shown that gamma-secretase exists as high molecular weight complexes, suggesting the possibility of dimer/multimer formation. We combined a biochemical approach with a novel morphological microscopy assay to analyze PS1 dimer formation and subcellular distribution in situ, in intact mammalian cells. Both coimmunoprecipitation and fluorescent lifetime imaging microscopy approaches showed that wildtype PS1 molecules form dimers. Moreover, PS1 holoproteins containing the D257A mutation also come into close enough proximity to form a dimer, suggesting that cleavage within the loop is not necessary for dimer formation. Taken together these data suggest that PS1 dimerization occurs during normal PS1 function.  相似文献   

19.
Valpha14 NKT cells exhibit various immune regulatory properties in vivo, but their precise mechanisms remain to be solved. In this study, we demonstrate the mechanisms of generation of regulatory dendritic cells (DCs) by stimulation of Valpha14 NKT cells in vivo. After repeated injection of alpha-galactosylceramide (alpha-GalCer) into mice, splenic DCs acquired properties of regulatory DCs in IL-10-dependent fashion, such as nonmatured phenotypes and increased IL-10 but reduced IL-12 production. The unique cytokine profile in these DCs appears to be regulated by ERK1/2 and IkappaB(NS). These DCs also showed an ability to suppress the development of experimental allergic encephalomyelitis by generating IL-10-producing regulatory CD4 T cells in vivo. These findings contribute to explaining how Valpha14 NKT cells regulate the immune responses in vivo.  相似文献   

20.
Spondyloarthropathies (SpA) are a group of chronic rheumatic diseases, which show a strong asoociation with human leukocyte antigen (HLA)-B27. Although the association between HLA-B27 and the susceptibility to SpA was discovered thirty years ago, the exact mechanism by which HLA-B27 predisposes to disease development remains unclear. The classical role of MHC class I molecules is to present peptides for CD8+ T cells. Therefore, it has been proposed that the antigen presenting function of HLA-B27 is somehow altered in the patients developing SpA. However, despite extensive research, the attempts to create a comprehensive theory that would explain the role of HLA-B27 as an antigen presenting molecule in the development of SpA have been unsuccessful. Reactive arthritis (ReA) belongs to the group of SpA. It is a joint inflammation developing after certain bacterial infections e.g. Salmonella, Yersinia, and Chlamydia. Several unrelated observations indicate that HLA-B27 modulates the interaction between ReA-triggering bacteria and host cell. These findings suggest that HLA-B27 may possess functions, which are unrelated to antigen presentation. In this paper, we summarize these findings and discuss their potential impact in the development of SpA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号