首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Mitochondrial dysfunctions have been detected in non-alcoholic steatohepatitis, but less information exists regarding adaptation of mitochondrial function during the initiation of hepatic steatosis. This study aimed to determine in rat liver the sequence of mitochondrial and metabolic adaptations occurring during the first 8 weeks of a moderate high fat diet (HFD). Sprague-Dawley rats were fed a HFD during 2, 4, and 8 weeks. Mitochondrial oxygen consumption, respiratory chain complexes activity, and oxidative phosphorylation efficiency were assessed in isolated liver mitochondria. Gene expression related to fat metabolism and mitochondrial biogenesis were determined. Results were compared to data collected in a group of rats sacrificed before starting the HFD feeding. After 2 and 4 weeks of HFD, there was a development of fatty liver and a concomitant increase the expression of mitochondrial glycerol-3-phosphate acyltransferase (mtGPAT) and peroxisome proliferator-activated receptor γ. Higher serum β-hydroxybutyrate levels and enhanced hepatic pyruvate dehydrogenase kinase 4 expression suggested increased fatty acid oxidation. However, mitochondrial respiration and respiratory chain activity were normal. After 8 weeks of HFD, lower accumulation of liver triglycerides was associated with reduced expression of mtGPAT. At this time, oxygen consumption with palmitoyl-L: -carnitine was decreased whereas oxidative phosphorylation efficiency (ATP/O) with succinate was enhanced. Hepatic levels of mtDNA were unchanged whatever the time points. This longitudinal study in rats fed a HFD showed that hepatic lipid homeostasis and mitochondrial function can adapt to face the increase in fatty acid availability.  相似文献   

2.
Chronic alcohol consumption results in hepatotoxicity, steatosis, hypoxia, increased expression of inducible nitric oxide synthase (iNOS) and decreased activities of mitochondrial respiratory enzymes. The impact of these changes on cellular respiration and their interaction in a cellular setting is not well understood. In the present study we tested the hypothesis that nitric oxide (NO)-dependent modulation of cellular respiration and the sensitivity to hypoxic stress is increased following chronic alcohol consumption. This is important since NO has been shown to regulate mitochondrial function through its interaction with cytochrome c oxidase, although at higher concentrations, and in combination with reactive oxygen species, can result in mitochondrial dysfunction. We found that hepatocytes isolated from alcohol-fed rats had decreased mitochondrial bioenergetic reserve capacity and were more sensitive to NO-dependent inhibition of respiration under room air and hypoxic conditions. We reasoned that this would result in greater hypoxic stress in vivo, and to test this, wild-type and iNOS(-/-) mice were administered alcohol-containing diets. Chronic alcohol consumption resulted in liver hypoxia in the wild-type mice and increased levels of hypoxia-inducible factor 1 α in the peri-venular region of the liver lobule. These effects were attenuated in the alcohol-fed iNOS(-/-) mice suggesting that increased mitochondrial sensitivity to NO and reactive nitrogen species in hepatocytes and iNOS plays a critical role in determining the response to hypoxic stress in vivo. These data support the concept that the combined effects of NO and ethanol contribute to an increased susceptibility to hypoxia and the deleterious effects of alcohol consumption on liver.  相似文献   

3.
The increasing prevalence of obesity worldwide is associated with a parallel increase in non-alcoholic fatty liver disease (NAFLD). To investigate the effect of Lactobacillus johnsonii BS15 on NAFLD, 120 male ICR mice were randomly divided into four groups and administrated with BS15 (2?×?107 cfu/0.2 mL or 2?×?108 cfu/0.2 mL) or phosphate buffered saline (PBS) throughout a 17-week experimental period. The mice were fed with normal chow diet (NCD) 5 weeks before the experimental period. Afterward, with the exception of the PBS group, NCD was changed into high-fat diet (HFD) for the remaining experimental period. Results showed that BS15-treated HFD mice were protected from hepatic steatosis and hepatocyte apoptosis. BS15 exhibited a positive effect on liver lipid peroxidation through an anti-oxidative stress activity by enhancing the liver antioxidant defense system. In addition, BS15 inhibited the insulin resistance; decreased the mRNA levels of acetyl–CoA carboxylase 1, fatty acid synthase, and peroxisome proliferator-activated receptor γ; and increased the expression of the fasting-induced adipose factor in livers. Meanwhile, BS15 attenuated mitochondria abnormalities when the content of uncoupling protein-2 decreased and cytochrome c increased in NAFLD mice. BS15 also reduced the level of serum lipopolysaccharide in NAFLD mice by lowering the intestinal permeability and adjusting gut flora, followed by the downregulation of the TNFα mRNA level in liver and the serum level of C-reactive protein. These findings suggest that BS15 may be effective in preventing NAFLD induced by HFD.  相似文献   

4.

Background

Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance.

Methodology

C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR.

Principal Findings

At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks.

Conclusions/Interpretation

Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in mitochondrial fat oxidative capacity and (muscle) insulin resistance.  相似文献   

5.
BackgroundObstructive sleep apnea syndrome (OSAS) is associated to intermittent hypoxia (IH) and is an aggravating factor of non-alcoholic fatty liver disease (NAFLD). We investigated the effects of hypoxia in both in vitro and in vivo models of NAFLD.MethodsPrimary rat hepatocytes treated with free fatty acids (FFA) were subjected to chemically induced hypoxia (CH) using the hypoxia-inducible factor-1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Triglyceride (TG) content, mitochondrial superoxide production, cell death rates, cytokine and inflammasome components gene expression and protein levels of cleaved caspase-1 were assessed. Also, Kupffer cells (KC) were treated with conditioned medium (CM) and extracellular vehicles (EVs) from hypoxic fat-laden hepatic cells. The choline deficient L-amino acid defined (CDAA)-feeding model used to assess the effects of IH on experimental NAFLD in vivo.ResultsHypoxia induced HIF-1α in cells and animals. Hepatocytes exposed to FFA and CoCl2 exhibited increased TG content and higher cell death rates as well as increased mitochondrial superoxide production and mRNA levels of pro-inflammatory cytokines and of inflammasome-components interleukin-1β, NLRP3 and ASC. Protein levels of cleaved caspase-1 increased in CH-exposed hepatocytes. CM and EVs from hypoxic fat-laden hepatic cells evoked a pro-inflammatory phenotype in KC. Livers from CDAA-fed mice exposed to IH exhibited increased mRNA levels of pro-inflammatory and inflammasome genes and increased levels of cleaved caspase-1.ConclusionHypoxia promotes inflammatory signals including inflammasome/caspase-1 activation in fat-laden hepatocytes and contributes to cellular crosstalk with KC by release of EVs. These mechanisms may underlie the aggravating effect of OSAS on NAFLD. [Abstract word count: 257].  相似文献   

6.
Non-alcoholic fatty liver disease (NAFLD) is an increasingly reported pathology, characterized by fat accumulation within the hepatocyte. Growing evidences suggest specific effects on mitochondrial metabolism, but it is still unclear the relationship between fatty liver progression and mitochondrial function. In the present work we have investigated the impact of fatty liver on mitochondrial bioenergetic functions and susceptibility to mitochondrial permeability transition (MPT) induction in animals fed a choline-deficient diet (CDD) for 4, 8, 12 or 16 weeks. Mitochondria isolated from CDD animals always exhibited higher state 4 respiration. Mitochondrial membrane potential was decreased in CDD animals at 4 and 16 weeks. At 12 weeks, oxidative phosphorylation was more efficient in CDD animals, suggesting a possible early response trying to revert the deleterious effect of increased triglyceride storage in the liver. However, mitochondrial dysfunction was evident in CDD animals at 16 weeks as indicated by decreased RCR and ADP/O, with a corresponding decrease in respiratory chain enzymes activities. Such loss of respiratory efficiency was associated with accumulation of protein oxidation products, in tissue and mitochondrial fraction. Additionally, although no differences in ATPase activity, the lag phase was increased in mitochondria from CDD animals at 16 weeks, associated with decreased content of the adenine nucleotide translocator. Increased susceptibility to calcium-induced MPT was evident in CDD animals at all time points. These results suggest a dynamic mechanism for the development of NALFD associated with altered mitochondrial function.  相似文献   

7.

Aims

Metabolic syndrome induces cardiac dysfunction associated with mitochondria abnormalities. As low levels of carbon monoxide (CO) may improve myocardial and mitochondrial activities, we tested whether a CO-releasing molecule (CORM-3) reverses metabolic syndrome-induced cardiac alteration through changes in mitochondrial biogenesis, dynamics and autophagy.

Methods and Results

Mice were fed with normal diet (ND) or high-fat diet (HFD) for twelve weeks. Then, mice received two intraperitoneal injections of CORM-3 (10 mg.kg−1), with the second one given 16 hours after the first. Contractile function in isolated hearts and mitochondrial parameters were evaluated 24 hours after the last injection. Mitochondrial population was explored by electron microscopy. Changes in mitochondrial dynamics, biogenesis and autophagy were assessed by western-blot and RT-qPCR. Left ventricular developed pressure was reduced in HFD hearts. Mitochondria from HFD hearts presented reduced membrane potential and diminished ADP-coupled respiration. CORM-3 restored both cardiac and mitochondrial functions. Size and number of mitochondria increased in the HFD hearts but not in the CORM-3–treated HFD group. CORM-3 modulated HFD-activated mitochondrial fusion and biogenesis signalling. While autophagy was not activated in the HFD group, CORM-3 increased the autophagy marker LC3-II. Finally, ex vivo experiments demonstrated that autophagy inhibition by 3-methyladenine abolished the cardioprotective effects of CORM-3.

Conclusion

CORM-3 may modulate pathways controlling mitochondrial quality, thus leading to improvements of mitochondrial efficiency and HFD-induced cardiac dysfunction.  相似文献   

8.
Fat intake alters mitochondrial lipid composition which can affect function. We used novel methodology to assess bioenergetics, including simultaneous ATP and reactive oxygen species (ROS) production, in liver and heart mitochondria of C57BL/6 mice fed diets of variant fatty acid content and saturation. Our methodology allowed us to clamp ADP concentration and membrane potential (ΔΨ) at fixed levels. Mice received a control diet for 17–19 weeks, a high-fat (HF) diet (60 % lard) for 17–19 weeks, or HF for 12 weeks followed by 6–7 weeks of HF with 50 % of fat as menhaden oil (MO) which is rich in n-3 fatty acids. ATP production was determined as conversion of 2-deoxyglucose to 2-deoxyglucose phosphate by NMR spectroscopy. Respiration and ATP production were significantly reduced at all levels of ADP and resultant clamped ΔΨ in liver mitochondria from mice fed HF compared to controls. At given ΔΨ, ROS production per mg mitochondrial protein, per unit respiration, or per ATP generated were greater for liver mitochondria of HF-fed mice compared to control or MO-fed mice. Moreover, these ROS metrics began to increase at a lower ΔΨ threshold. Similar, but less marked, changes were observed in heart mitochondria of HF-fed mice compared to controls. No changes in mitochondrial bioenergetics were observed in studies of separate mice fed HF versus control for only 12 weeks. In summary, HF feeding of sufficient duration impairs mitochondrial bioenergetics and is associated with a greater ROS “cost” of ATP production compared to controls. These effects are, in part, mitigated by MO.  相似文献   

9.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

10.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

11.
12.
Excessive consumption of saturated fat leads to non-alcoholic fatty liver disease (NAFLD), which is attenuated by supplementation of n-3 polyunsaturated fatty acids (PUFAs). Endoplasmic reticulum (ER) stress is crucial in the development of NAFLD, but how high-saturated fat diet (HFD) causes ER stress and NAFLD remains unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in hepatic ER stress. We aimed to explore the roles of LOX-1 in HFD-induced ER stress. Male Sprague–Dawley rats were fed an HFD without or with supplementation of fish oil for 16 weeks. The effects of n-3 PUFAs on hepatic ER stress degrees and the expression levels of LOX-1 were examined. Then human L02 hepatoma cells were treated with palmitate or palmitate and DHA to determine the ER stress and LOX-1 expression levels in vitro. After that the expression of LOX-1 in L02 cells was either knocked-down or overexpressed to analyze the roles of LOX-1 in palmitate-induced ER stress. The feeding of HFD induced NAFLD development and ER stress in the liver, and LOX-1 expressing level, which were all reversed by fish oil supplementation. In vitro, DHA treatment reduced the expression of LOX-1, and palmitate-induced ER stress. SiRNA-mediated knock-down of LOX-1 inhibited palmitate-induced ER stress, whereas overexpression of LOX-1 dramatically induced ER stress in L02 cells.LOX-1 is critical for HFD-induced ER stress, and inhibition of its expression under the treatment of n-3 PUFAs could ameliorate HFD-induced NAFLD.  相似文献   

13.
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.  相似文献   

14.
Non-alcoholic fatty liver disease (NAFLD) is a complication of childhood obesity and an oxidative stress-related multisystem disease. A mitochondria-targeting hydrogen sulfide (H2S) donor AP39 has antioxidant property, while the mechanism underlying the function of AP39 on pediatric NAFLD remains undefined. Here, 3-week-old SD rats were received a high-fat diet (HFD) feeding and injected with AP39 (0.05 or 0.1 mg/kg/day) via the tail vein for up to 7 weeks. AP39 reduced weight gain of HFD rats and improved HFD-caused liver injury, as evidenced by reduced liver index, improved liver pathological damage, decreased NAFLD activity score, as well as low alanine transaminase (ALT) and aspartate transaminase (AST) activities. AP39 also reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) concentrations but increased high-density lipoprotein-cholesterol (HDL-C). Moreover, AP39 prevented reactive oxygen species (ROS) generation, reduced MDA content and increased glutathione (GSH) level and superoxide dismutase (SOD) activity. Furthermore, AP39 increased H2S level, protected mitochondrial DNA (mtDNA), reduced mitochondrial swelling, and restored mitochondrial membrane potential (MMP) alteration. Notably, AP39 diminished HIF-1α mRNA and protein level, possibly indicating the alleviation in mitochondrial damage. In short, AP39 protects against HFD-induced liver injury in young rats probably through attenuating lipid accumulation, oxidative stress and mitochondrial dysfunction.  相似文献   

15.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

16.
The apoptotic effector Bid regulates cell death at the level of mitochondria. Under its native state, Bid is a soluble cytosolic protein that undergoes proteolysis and yields a 15 kDa-activated form tBid (truncated Bid). tBid translocates to mitochondria and participates in cytochrome c efflux by a still unclear mechanism, some of them at least mediated by Bax. Using mitochondria isolated from wild-type and cardiolipin (CL)-synthase-less yeast strains, we observed that tBid perturbs mitochondrial bioenergetics by inhibiting state-3 respiration and ATP synthesis and that this effect was strictly dependent on the presence of CL. In a second set of experiments, heterologous coexpression of tBid and Bax in wild-type and CL-less yeast strains showed that (i) tBid binding and the subsequent alteration of mitochondrial bioenergetics increased Bax-induced cytochrome c release and (ii) the absence of CL favors Bax effects independently of the presence of t-Bid. These data support recent views suggesting a dual function of CL in mitochondria-dependent apoptosis.  相似文献   

17.
Nitric oxide (NO) and other reactive nitrogen species target multiple sites in the mitochondria to influence cellular bioenergetics and survival. Kinetic imaging studies revealed that NO from either activated macrophages or donor compounds rapidly diffuses to the mitochondria, causing a dose-dependent progressive increase in NO-dependent DAF fluorescence, which corresponded to mitochondrial membrane potential loss and initiated alterations in cellular bioenergetics that ultimately led to necrotic cell death. Cellular dysfunction is mediated by an elevated 3-nitrotyrosine signature of the mitochondrial complex I subunit NDUFB8, which is vital for normal mitochondrial function as evidenced by selective knockdown via siRNA. Overexpression of mitochondrial superoxide dismutase substantially decreased NDUFB8 nitration and restored mitochondrial homeostasis. Further, treatment of cells with either necrostatin-1 or siRNA knockdown of RIP1 and RIP3 prevented NO-mediated necrosis. This work demonstrates that the interaction between NO and mitochondrially derived superoxide alters mitochondrial bioenergetics and cell function, thus providing a molecular mechanism for reactive oxygen and nitrogen species-mediated alterations in mitochondrial homeostasis.  相似文献   

18.
Metformin (MET) and genistein (GEN) have a beneficial role in alleviating non-alcoholic fatty liver disease (NAFLD), but their combined effect on this disease has not yet been studied. The present study aimed to investigate the potential protective effects of combined MET and GEN on NAFLD in high-fat diet (HFD) fed mice. C57BL/6 male mice were fed on an HFD for 10 weeks. Animals were then divided into different groups and treated with MET (0.23%), GEN (0.2%) and MET+GEN (0.23% + 0.2%) for 3 months. Treatment with MET and GEN, alone or in combination significantly lowered body and liver weights and fasting blood glucose (FBG) in HFD mice. Combination therapy reduced liver triglyceride (TG) level and this effect was correlated with increased expression of carnitine palmitoyl transferase 1 (CPT1) gene, and reduced expression of fatty-acid synthase (FAS)and sterol regulatory element-binding protein-1c (SREBP-1c) genes. Combination therapy also affects gluconeogenesis pathway through decreasing expression of Glucose 6-phosphatase (G6Pase) and increasing phosphorylation of Glycogen synthase kinase 3β (GSK-3β). Furthermore, combination of MET and GEN ameliorates liver inflammation by switching macrophage into M2 phenotype, decreasing macrophage infiltration, reducing expression of pro-inflammatory cytokines and decreasing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. In addition, combination therapy enhances phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Taken together, these findings suggest that the combination of MET and GEN have beneficial effects against NAFLD in HFD-fed model.  相似文献   

19.
The mechanism of Cr(VI)-induced toxicity in plants and animals has been assessed for mitochondrial bioenergetics and membrane damage in turnip root and rat liver mitochondria. By using succinate as the respiratory substrate, ADP/O and respiratory control ratio (RCR) were depressed as a function of Cr(VI) concentration. State 3 and uncoupled respiration were also depressed by Cr(VI). Rat mitochondria revealed a higher sensitivity to Cr(VI), as compared to turnip mitochondria. Rat mitochondrial state 4 respiration rate triplicated in contrast to negligible stimulation of turnip state 4 respiration. Chromium(VI) inhibited the activity of the NADH-ubiquinone oxidoreductase (complex I) from rat liver mitochondria and succinate-dehydrogenases (complex II) from plant and animal mitochondria. In rat liver mitochondria, complex I was more sensitive to Cr(VI) than complex II. The activity of cytochrome c oxidase (complex IV) was not sensitive to Cr(VI). Unique for plant mitochondria, exogenous NADH uncoupled respiration was unaffected by Cr(VI), indicating that the NADH dehydrogenase of the outer leaflet of the plant inner membrane, in addition to complexes III and IV, were insensitive to Cr(VI). The ATPase activity (complex V) was stimulated in rat liver mitochondria, but inhibited in turnip root mitochondria. In both, turnip and rat mitochondria, Cr(VI) depressed mitochondrial succinate-dependent transmembrane potential (Deltapsi) and phosphorylation efficiency, but it neither affected mitochondrial membrane permeabilization to protons (H+) nor induced membrane lipid peroxidation. However, Cr(VI) induced mitochondrial membrane permeabilization to K+, an effect that was more pronounced in turnip root than in rat liver mitochondria. In conclusion, Cr(VI)-induced perturbations of mitochondrial bioenergetics compromises energy-dependent biochemical processes and, therefore, may contribute to the basal mechanism underlying its toxic effects in plant and animal cells.  相似文献   

20.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号