首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RNA interference: concept to reality in crop improvement   总被引:2,自引:0,他引:2  
  相似文献   

3.
Delivery of dsRNA for RNAi in insects: an overview and future directions   总被引:2,自引:0,他引:2  
Abstract RNA interference (RNAi) refers to the process of exogenous double‐stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi‐based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.  相似文献   

4.
RNA干涉现象自20世纪90年代被发现以来,现在已逐渐成为分子生物学和细胞生物学研究的有用工具之一,已被广泛应用到植物功能基因组研究和植物品质营养改良中。RNA干涉机制的深入研究以及该技术在植物基因功能分析中的应用,建立了新的功能基因组学研究平台。阐述了RNAi的分子作用机制、基因沉默的主要类型以及该技术在植物功能基因组研究和品质营养改良上的应用。  相似文献   

5.
6.
Over the past years RNA interference (RNAi) has exploded as a new approach to manipulate gene expression in mammalian systems. More recently, RNAi has acquired interest as a potential therapeutic strategy. This review focuses on the potential therapeutic use of RNAi for metabolic diseases, the current understanding of RNAi biology, and how RNAi has been utilized to study the role of different genes in the pathogenesis of diabetes and obesity. Also reviewed are the in vivo proof-of-principle experiments that provide the preclinical justification for the development of RNAi-based therapeutics for diabetes and the key challenges that currently limit its application in the clinical setting.  相似文献   

7.
RNA interference in infectious tropical diseases   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi.  相似文献   

8.
田宏刚  张文庆 《昆虫知识》2012,49(2):309-316
在昆虫中,RNAi是一种对抗外源病毒的天然免疫方式,基于生物体中的这种内在机制而建立的RNAi技术已经被广泛用来研究多种昆虫基因的功能。近年的研究结果表明RNAi技术在抵御害虫和防治益虫疾病方面具有潜在的应用价值,有可能对农业有害生物的控制起到巨大的推动作用。本文综述了RNAi与昆虫免疫、及其在昆虫基因功能研究、害虫控制、益虫疾病控制和昆虫系统生物学方面的最新研究进展,并展望了RNAi在昆虫学研究中的发展趋势。  相似文献   

9.
RNAi是由双链RNA(dsRNA)所诱发的转录后水平上的基因沉默.由于对靶基因沉默作用的高度特异性和高效性,因此近年来用于肿瘤性疾病、感染性疾病、遗传性疾病等疾病的基因治疗研究,特别是在抗病毒领域的研究更是成为其应用热点之一.虽然目前RNAi已经较为广泛地应用于动物病毒及各种疾病病毒的基因治疗研究中,但其在应用过程中还有许多亟待解决的问题.本文就RNAi及其在抗病毒领域的应用研究和其存在的问题展开综述.  相似文献   

10.
RNA interference (RNAi) is triggered by double-stranded RNA helices that have been introduced exogenously into cells as small interfering (si)RNAs or that have been produced endogenously from small non-coding RNAs known as microRNAs (miRNAs). RNAi has become a standard experimental tool and its therapeutic potential is being aggressively harnessed. Understanding the structure and function of small RNAs, such as siRNAs and miRNAs, that trigger RNAi has shed light on the RNAi machinery. In particular, it has highlighted the assembly and function of the RNA-induced silencing complex (RISC), and has provided guidelines to efficiently silence genes for biological research and therapeutic applications of RNAi.  相似文献   

11.
RNA silencing platforms in plants   总被引:1,自引:0,他引:1  
Watson JM  Fusaro AF  Wang M  Waterhouse PM 《FEBS letters》2005,579(26):5982-5987
Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop.  相似文献   

12.
13.
Strategies for silencing human disease using RNA interference   总被引:14,自引:0,他引:14  
  相似文献   

14.
昆虫的RNA干扰   总被引:2,自引:0,他引:2  
杨广  尤民生  赵伊英  刘春辉 《昆虫学报》2009,52(10):1156-1162
RNA干扰(RNAi)是一种强有力的分子生物学技术, 在昆虫研究中得到了较多的应用。目前, RNAi技术主要应用于昆虫功能基因和功能基因组研究, 已在多个目的19种昆虫上实现了RNAi。在昆虫上实现RNAi的方法主要有注射、浸泡、喂食、转基因和病毒介导等方法, 这些方法各有特点, 其中喂食法因其简单而最有应用前景。昆虫RNAi的系统性较为复杂, 只有部分昆虫具有RNAi的系统性。昆虫中RNAi信号传导的基因可能是sid-1, 但昆虫RNAi的系统性机理还不是很清楚。转基因植物产生的dsRNA实现了对作物的保护, 证实了RNAi技术可用于害虫控制, 为害虫控制开辟了新领域。昆虫的RNAi研究处在起步阶段, 研究昆虫RNAi的机理, 特别是RNAi在昆虫体内的系统性扩散机理, 改进实现RNAi的方法, 提高RNAi技术在昆虫研究中的应用, 有利于昆虫基因功能鉴定和害虫控制, 促进昆虫学科的发展。  相似文献   

15.
16.
RNA interference (RNAi) has emerged as one of the most important discoveries of the last years in the field of molecular biology. Following clarification of this highly conserved endogenous gene silencing mechanism, RNAi has largely been exploited as a powerful tool to uncover the function of specific genes and to understand the effects of selective gene silencing in mammalian cells both in vitro and in vivo. RNAi can be induced by direct introduction of chemically synthesized siRNAs into the cell or by the use of plasmid and viral vectors encoding for siRNA allowing a more stable RNA knockdown. Potential application of this technique both as a research tool and for therapeutic purposes has led to an extensive effort to overcome some critical constraints which may limit its successful application in vivo, including off-target and non-specific effects, as well as the relatively poor stability of siRNA. This review provides a brief overview of the RNAi mechanism and of its application in preclinical animal models of cancer.  相似文献   

17.
18.
RNA干扰及其在动物繁殖研究中的应用   总被引:1,自引:0,他引:1  
RNA干扰(RNAi)是指小分子双链RNA通过特异性降解与其同源的mRNA,而在mRNA水平上高效阻断体内特异性基因表达的现象,属于转录后水平基因沉默。利用该技术进行基因功能研究,经济有效,通用性好,已成为反向遗传学研究中最重要的工具之一。在动物繁殖领域,RNAi技术主要应用于体外研究哺乳类和禽类卵母细胞发育、胚胎发育和精子形成中重要基因的功能及其作用机制。随着该技术不断发展完善,RNAi必将在动物繁殖生产实践中发挥巨大的作用。  相似文献   

19.
RNA interference: roles in fungal biology   总被引:1,自引:0,他引:1  
The discovery of RNA interference (RNAi) has been the major recent breakthrough in biology. Only a few years after its discovery, RNAi has rapidly become a powerful reverse genetic tool, especially in organisms where gene targeting is inefficient and/or time-consuming. In filamentous fungi, RNAi is not currently used as widely as is gene targeting by homologous recombination that works with practical efficiencies in most model fungal species. However, to explore gene function in filamentous fungi, RNAi has the potential to offer new, efficient tools that gene disruption methods cannot provide. In this review, possible advantages and disadvantages of RNAi for fungal biology in the postgenomics era will be discussed. In addition, we will briefly review recent discoveries on RNAi-related biological phenomena (RNA silencing) in fungi.  相似文献   

20.
Environmental RNA interference   总被引:5,自引:0,他引:5  
The discovery of RNA interference (RNAi), the process of sequence-specific gene silencing initiated by double-stranded RNA (dsRNA), has broadened our understanding of gene regulation and has revolutionized methods for genetic analysis. A remarkable property of RNAi in the nematode Caenorhabditis elegans and in some other multicellular organisms is its systemic nature: silencing signals can cross cellular boundaries and spread between cells and tissues. Furthermore, C. elegans and some other organisms can also perform environmental RNAi: sequence-specific gene silencing in response to environmentally encountered dsRNA. This phenomenon has facilitated significant technological advances in diverse fields including functional genomics and agricultural pest control. Here, we describe the characterization and current understanding of environmental RNAi and discuss its potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号