首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Miura M  Satoh S  Inoue K  Kagaya H  Saito M  Inoue T  Habuchi T  Suzuki T 《Steroids》2008,73(11):1052-1059
The objective of this study was to evaluate whether genetic polymorphisms of CYP3A5 (A6986G, CYP3A5*3), ABCB1 (C1236T, G2677T/A, C3435T) and NR1I2 (A7635G) significantly impact the pharmacokinetics of prednisolone in renal transplant recipients. Ninety-five recipients were given repeated doses of triple therapy immunosuppression consisting of prednisolone, tacrolimus and mycophenolate mofetil. Twenty-eight days after renal transplantation, plasma prednisolone concentrations were measured by high-performance liquid chromatography. Comparisons of the CYP3A5 and ABCB1 genotypes revealed no significant differences in the prednisolone pharmacokinetics. The mean prednisolone C(max) for recipients (n=14) having both the ABCB1 3435CC genotype and the CYP3A5*3/*3 genotype was significantly higher than those (n=11) having both ABCB1 3435TT and CYP3A5*3/*3 genotypes (180ng/mL versus 129ng/mL, P=0.0392). The plasma concentrations of prednisolone in recipients having both ABCB1 3435CC and CYP3A5*3/*3 genotypes tended to be higher than those having both ABCB1 3435TT and CYP3A5*3/*3 genotypes. The mean AUC(0-24) and C(max) values for prednisolone in recipients having the NR1I2 7635G allele (AG: n=45, GG: n=32) were significantly lower than in patients having the 7635AA allele (n=18) (7635GG versus 7635AA, P=0.0308 for AUC(0-24), P=0.0382 for C(max) of prednisolone). In conclusion, NR1I2 (A7635G) rather than CYP3A5 or ABCB1 allelic variants affected patient variability of plasma prednisolone concentration. Recipients carrying the NR1I2 7635G allele seemed to possess higher metabolic activity for prednisolone in the intestine, greatly reducing its maximal plasma concentration.  相似文献   

2.

Objectives

Tacrolimus is a widely used immunosuppressive drug in organ transplantation. The oral bioavailability of tacrolimus varies greatly between individuals and depends largely on the activity of both the cytochrome P450 3A (CYP3A) subfamily and P-glycoprotein (P-gp). The possible influence of single nucleotide polymorphisms (SNPs) of CYP3A subfamily and P-gp (MDR-1) in liver transplant recipients has recently been indicated as one of the most important variables affecting the pharmacokinetics of tacrolimus and the renal injury induced by tacrolimus.

Methods

A total of 216 liver transplant recipients were enrolled in this study. The recipients' mean follow-up time was 52 mo (range from 16 to 96 mo). All liver transplant recipients were all in a stable stage with normal serum creatinine (SCr). All liver transplant recipients treated with tacrolimus were genotyped for CYP3A5 (6986A>G), CYP3A4 intron 6 (CYP3A4*22), MDR-1 exon 26 (3435C>T) and exon 12 (1236 C>T) SNPs by HRM analysis (high-resolution melting curve analysis). Recipients were defined as the early renal injury by the elevation of different microproteins in the urine including microalbumin (MA), urine immunoglobulin G (IGU), urine transferrin (TRU) and α1-microglobulin (A1M).

Results

The daily dose of tacrolimus was higher for recipients with CYP3A5*1/*1 (AA) genotype than those with CYP3A5*3/*3 (GG) genotype [3.0 (2.0–4.0) versus 2.0 (1.5–2.5) mg/d, P < 0.05]. The concentration/dose ratio of recipients with CYP3A5*1 homozygotes was lowest compared to recipients with CYP3A5*3/*3 and CYP3A5*1/*3 genotypes. Furthermore, the recipients carrying CYP3A5*3 allele were associated with increased risk of early renal glomerular injury compared to the recipients carrying CYP3A5*1 allele (P = 0.01). MDR-1 polymorphisms were not related with tacrolimus pharmacokinetics and early renal injury.

Conclusion

CYP3A5 6986A>G genetic polymorphism affected daily dose requirements, concentration and nephrotoxicity of tacrolimus. Screening for this single nucleotide polymorphism before the transplantation might be helpful for the selection of adequate initial daily dose and to achieve the desired immunosuppression outcome.  相似文献   

3.

Background

Pharmacogenetics contributes to inter-individual variability in pharmacokinetics (PK) of efavirenz (EFV), leading to variations in both efficacy and toxicity. The purpose of this study was to assess the effect of genetic factors on EFV pharmacokinetics, treatment outcomes and genotype based EFV dose recommendations for adult HIV-1 infected Ugandans.

Methods

In total, 556 steady-state plasma EFV concentrations from 99 HIV infected patients (64 female) treated with EFV/lamivudine/zidovidine were analyzed. Patient genotypes for CYP2B6 (*6 & *11), CYP3A5 (*3,*6 & *7) and ABCB1 c.4046A>G, baseline biochemistries and CD4 and viral load change from baseline were determined. A one-compartment population PK model with first-order absorption (NONMEM) was used to estimate genotype effects on EFV pharmacokinetics. PK simulations were performed based upon population genotype frequencies. Predicted AUCs were compared between the product label and simulations for doses of 300 mg, 450 mg, and 600 mg.

Results

EFV apparent clearance (CL/F) was 2.2 and 1.74 fold higher in CYP2B6*6 (*1/*1) and CYP2B6*6 (*1/*6) compared CYP2B6*6 (*6/*6) carriers, while a 22% increase in F1 was observed for carriers of ABCB1 c.4046A>G variant allele. Higher mean AUC was attained in CYP2B6 *6/*6 genotypes compared to CYP2B6 *1/*1 (p<0.0001). Simulation based AUCs for 600 mg doses were 1.25 and 2.10 times the product label mean AUC for the Ugandan population in general and CYP2B6*6/*6 genotypes respectively. Simulated exposures for EFV daily doses of 300 mg and 450 mg are comparable to the product label. Viral load fell precipitously on treatment, with only six patients having HIV RNA >40 copies/mL after 84 days of treatment. No trend with exposure was noted for these six patients.

Conclusion

Results of this study suggest that daily doses of 450 mg and 300 mg might meet the EFV treatment needs of HIV-1 infected Ugandans in general and individuals homozygous for CYP2B6*6 mutation, respectively.  相似文献   

4.

BACKGROUND:

CYP3A5 was observed to be an important genetic contributor to inter individual differences in CYP3A-dependent drug metabolism in acute leukemic patients. Loss of CYP3A5 expression was mainly conferred by a single nucleotide polymorphism at 6986A>G (CYP3A5*3). We investigated the association between CYP3A5*3 polymorphism and acute leukemia.

MATERIALS AND METHODS:

Two hundred and eighty nine acute leukemia cases comprising of 145 acute lymphocytic leukemia (ALL), 144 acute myeloid leukemia and 241 control samples were analyzed for CYP3A5*3 polymorphism using PCR-RFLP method. Statistical analysis was performed with SPSS version (15.0) to detect the association between CYP3A5*3 polymorphism and acute leukemia.

RESULTS:

The CYP3A5*3 polymorphism 3/3 genotype was significantly associated with acute leukemia development (χ2- 133.53; df-2, P 0.000). When the data was analyzed with respect to clinical variables, mean WBC, blast % and LDH levels were increased in both ALL and AML cases with 3/3 genotype. The epidemiological variables did not contribute to the genotype risk to develop either AML or ALL.

CONCLUSION:

The results suggest that the CYP3A5*3 polymorphism might confer the risk to develop ALL or AML emphasizing the significance of effective phase I detoxification in carcinogenesis. Association of the polymorphism with clinical variables indicate that the 3/3 genotype might also contribute to poorer survival of the patients.  相似文献   

5.
Aim of work: To assess the impact of Cytochrome P450 3A5 (CYP3A5) and multidrug resistance-1 gene (MDR-1) single nucleotide polymorphisms on the dose and blood level of tacrolimus among liver transplanted patients.

Patients and methods: We enrolled a prospective study of 41 liver transplanted patients. Dose-adjusted trough blood concentration (C/D ratio) was calculated. Polymerase chain reaction-restriction fragment length polymorphism followed by sequencing was done for genotyping of CYP3A5*3 (6986A?>?G).

Results: At 1 week, 1 and 3 months C/D ratio were significantly lower in CYP3A5 expressers *1/*1 patients compared to non-expressers *3/*3.

Conclusion: CYP3A5 (6986A?>?G) genotype, rather than MDR-1 (2677G?>?A/T) variant, has an impact on tacrolimus pharmacokinetics.  相似文献   

6.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

7.

Background and Objective

The association between the CYP3A4*1B single nucleotide polymorphism (SNP) and tacrolimus pharmacokinetics in different studies is controversial. Therefore, a meta-analysis was employed to evaluate the correlation between the CYP3A4*1B genetic polymorphism and tacrolimus pharmacokinetics at different post-transplantation times in adult renal transplant recipients.

Methods

Studies evaluating the CYP3A4*1B genetic polymorphism and tacrolimus pharmacokinetics were retrieved through a systematical search of Embase, PubMed, the Cochrane Library, ClinicalTrials.gov and three Chinese literature databases (up to Sept. 2014). The pharmacokinetic parameters (weight-adjusted tacrolimus daily dose and tacrolimus trough concentration/weight-adjusted tacrolimus daily dose ratio) were extracted, and the meta-analysis was performed using Stata 12.1.

Results

Seven studies (involving 1182 adult renal transplant recipients) were included in this meta-analysis. For the weight-adjusted tacrolimus daily dose, in all included renal transplant recipients (European & Indian populations), CYP3A4*1/*1 recipients required a significantly lower weight-adjusted tacrolimus daily dose than did CYP3A4*1B carriers at 7 days (WMD -0.048; 95% CI -0.083 ~ -0.014), 6 months (WMD -0.058; 95% CI -0.081 ~ -0.036) and 12 months (WMD - 0.061; 95% CI -0.096 ~ -0.027) post-transplantation. In light of the heterogeneity, the analysis was repeated after removing the only study in an Indian population, and CYP3A4*1/*1 European recipients (mostly Caucasian) required a lower weight-adjusted tacrolimus daily dose within the first year post-transplantation. The tacrolimus trough concentration/weight-adjusted tacrolimus daily dose ratio (C0/Dose ratio) was significantly higher in CYP3A4*1/*1 recipients than in CYP3A4*1B carriers at 6 months (WMD 52.588; 95% CI 22.387 ~ 82.789) and 12 months (WMD 62.219; 95% CI 14.218 ~ 110.221) post-transplantation. When the only study in an Indian population was removed to examine European recipients (mostly Caucasian), the significant difference persisted at 1 month, 6 months and 12 months post-transplantation.

Conclusion

Based on our meta-analysis, the CYP3A4*1B genetic polymorphism affects tacrolimus dose requirements and tacrolimus trough concentration/weight-adjusted tacrolimus daily dose ratio within the first year post-transplantation in adult renal transplant recipients, especially in European recipients (mostly Caucasian).  相似文献   

8.
A single-nucleotide polymorphism (A6986G) in the cytochrome p-450 3A5 (CYP3A5) gene distinguishes an expressor (*1) and a reduced-expressor (*3) allele and largely predicts CYP3A5 content in liver and intestine. CYP3A5 is the prevailing CYP3A isoform in kidney. We report that, among renal microsomes from 21 organ donors, those from *1/*3 individuals had at least eightfold higher mean kidney microsomal CYP3A5 content and 18-fold higher mean CYP3A catalytic activity than did those from *3/*3 individuals (P = 0.0001 and P = 0.0137, respectively). We also report significant associations between the A6986G polymorphism and systolic blood pressure (P = 0.0007), mean arterial pressure (P = 0.0075), and creatinine clearance (P = 0.0035) among 25 healthy African-American adults. These associations remained significant when sex, age, and body mass index were taken into account. The mean systolic blood pressure of homozygous CYP3A5 expressors (*1/*1) exceeded that of homozygous nonexpressors (*3/*3) by 19.3 mmHg. We speculate whether a high CYP3A5 expressor allele frequency among African-Americans may contribute to a high prevalence of sodium-sensitive hypertension in this population.  相似文献   

9.
The main therapeutic agent for gastroesophageal reflux disease (GERD) is a proton pump inhibitor (PPI). Plasma levels and the acid inhibitory effect of PPIs depend on the activity of cytochrome P450 (CYP) 2C19, which is polymorphic. Genotypes of CYP2C19 are classified into three groups: rapid metabolizers (RMs: *1/*1), intermediate metabolizers (IMs: *1/*X), and poor metabolizers (PMs: *X/*X), where *1 and X represent the wild type and the mutant allele, respectively. RMs include ultra-rapid metabolizers, who possess the CYP2C19*17 allele. The pharmacokinetics and pharmacodynamics of PPIs differ among different CYP2C19 genotype groups. Plasma PPI levels and intragastric pH values during PPI treatment are lowest in the RM group, intermediate in the IM group, and highest in the PM group. These CYP2C19-genotype-dependent differences in the pharmacokinetics and pharmacodynamics of PPIs influence the healing and recurrence of GERD during PPI treatment, suggesting the need for CYP2C19 genotype-based tailored therapy for GERD. CYP2C19 pharmacogenetics should be taken into consideration for the personalization of PPI-based therapy. However, the clinical usefulness of CYP2C19 genotype testing in GERD therapy should be verified in clinical studies.  相似文献   

10.
The aim was to investigate the prevalence of VKORC1 and CYP2C9 genotypes in patients requiring anticoagulant therapy in two different region’s populations of Turkey. The recent cohort included 292 patients that needed anticoagulant therapy, and who had a history of deep vein thrombosis and/or pulmonary artery thromboembolism. Genomic DNA was isolated from peripheral blood samples and the StripAssay reverse hybridization or Real Time PCR technique was used for genotype analysis. Genotypes for CYP2C9 were detected as follows: 165 (56.5?%) for CYP2C9*1/*1, 67 (23.0?%) for CYP2C9*1/*2, 25 (8.6?%) for CYP2C9*1/*3, 9 (3.0?%) for CYP2C9*2/*2, 21 (7.2?%) for CYP2C9*2/*3, 5(1.7?%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.723 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as follows: 64 (21.9?%) for GG, 220 (75.4?%) for GA and 8 (2.7?%) for AA alleles. The G allele frequency was detected as 0.596, and the A allele frequency was 0.404. The VKORC1 1639 G>A and CYP2C9 mutation prevalence and allele frequency of the current results from two different populations (Sivas and Canakkale) showed similarly very variable profiles when compared to the other results from the Turkish population.  相似文献   

11.
Wen S  Wang H  Ding Y  Liang H  Wang S 《Genetic testing》2004,8(4):411-416
Human cytochrome P450 3A4 (CYP34A) plays an important role in the metabolism of many endo- and xenomaterials. It also exhibits a substantial interindividual variation in enzymatic activity. It has been shown that the mutant alleles of CYP3A4 encoding inactive/decreased enzymes are largely caused by single nucleotide polymorphisms (SNPs) in the gene sequence. In the present study, with the goal of detecting the known SNPs of CYP3A4, an oligonucleotide microarray was created. A genotyping standard for this microarray was also established using constructed plasmids as standard templates. The 12 SNPs of CYP3A4 in 387 Chinese DNA samples were screened using this oligonucleotide microarray. Three heterozygous subjects of CYP3A4*/*4, 5 heterozygous subjects of CYP3A4*1/*5, 4 heterozygous subjects of CPY3A4*1/6, and 6 heterozygous subjects of CYP3A4*1/*18 were found. The genotyping results of the 18 heterozygous subjects and 12 wild-type subjects were validated by direct sequencing.  相似文献   

12.
The purpose of this study was to describe the impact of sex and cytochrome P450 3A5 (CYP3A5) variant on the blood concentration of tacrolimus in patients with systemic lupus erythematosus or rheumatoid arthritis. The blood concentration of tacrolimus (ng/mL) divided by the daily dose of tacrolimus (mg/day) and the patient’s weight (kg) (C/D) was obtained from 55 patients. The C/D value was analysed according to genetic variation in CYP3A5 or ATP binding cassette subfamily B member 1 (ABCB1), sex, and age. The C/D value in the CYP3A5*3/*3 group was significantly higher than in the CYP3A5*1/*1 and *1/*3 groups (p < 0.05, effect size: d = 1.40). In the CYP3A5*3/*3 group, the concentration of tacrolimus was significantly higher in men than in women (p < 0.05, effect size: d = 1.78). Furthermore, in the CYP3A5*3/*3 group, the concentration of tacrolimus was significantly higher in women aged over 50 years than in women aged under 50 years (p < 0.05, effect size: d = 1.18). In contrast, ABCB1 genetic variations did not show any significant effect on the C/D value. Since the blood concentration of tacrolimus in patients with CYP3A5*3/*3 varies depending on sex and age, these factors should be considered when studying the difference of sex in CYP3A.  相似文献   

13.
The genotype frequencies of three metabolic polymorphisms were determined in a sample of a typical community in central Mexico. CYP1A1*3, GSTM1, and GSTT1 polymorphisms were studied in 150 donors born in Mexico and with Mexican ascendants; with respect to ethnicity the subjects can be considered Mestizos. PCR reactions were used to amplify specific fragments of the selected genes from genomic DNA. An unexpected 56.7% frequency of the CYP1A1*3 allele (which depends on the presence of a Val residue in the 462 position of the enzyme, instead of Ile) was found, the highest described for open populations of different ethnic origins (i.e., Caucasian, Asian, African, or African American). The GSTM1 null genotype was found with a frequency of 42.6%, which is not different from other ethnicities, whereas the GSTT1 null genotype had a frequency of 9.3%, one of the lowest described for any ethnic group but comparable to the frequency found in India (9.7%). The frequency of the combined genotype CYP1A1*3/*3 and the GSTM1 null allele is one of the highest observed to date (or perhaps the highest): 13.7% among all the ethnicities studied, including Caucasians and Asians, whereas the combination of CYP1A1*3/*3 with the GSTT1 null allele reached only 2.8%. The GSTM1 null allele combined with the GSTT1 null allele, on the other hand, has one of the lowest frequencies described, 4.24%, comparable to the frequencies found in African Americans and Indians. Finally, the combined CYP1A1*3/*3, GSTM1 null allele, and GSTT1 null allele genotype could not be found in the sample studied; it is assumed that the frequency of carriers of these combined genotypes is less than 1%. CYP1A1*3 and CYP1A1*2 polymorphisms were also evaluated in 50 residents in a community of northern Mexico; the CYP1A1*3 frequency was 54%, similar to that found in the other community studied, and the CYP1A1*2 frequency was 40%, which is high compared to Caucasians and Asians but comparable to the frequency found in Japanese and lower than the frequency found in Mapuche Indians. Haplotype frequencies for these CYP1A1 polymorphisms were estimated, and a linkage disequilibrium value (D) of 0.137 was calculated.  相似文献   

14.

Background

Several studies have indicated that CYP2C19 loss-of-function polymorphisms have a higher risk of stent thrombosis (ST) after percutaneous coronary interventions (PCIs). However, this association has not been investigated thoroughly in a Chinese population. In this study, we aimed to determine the effect of CYP2C19*2 and CYP2C19*3 loss-of-function polymorphisms on the occurrence of ST and other adverse clinical events in a Chinese population.

Methods

We designed a cohort study among 1068 consecutive patients undergoing intracoronary stent implantation after preloading with 600 mg of clopidogrel. CYP2C19*2 and CYP2C19*3 were genotyped by using polymerase chain reaction-restriction fragment length polymorphism analysis. The adverse clinical events recorded were ST, death, myocardial infarction (MI), and bleeding events. The primary end point of the study was the incidence of cumulative ST within 1 year after PCI. The secondary end point was other adverse clinical outcomes 1 year after the procedure.

Results

The cumulative 1-year incidence of ST was 0.88% in patients with extensive metabolizers (EMs) (CYP2C19*1/*1 genotype), 4.67% in patients with intermediate metabolizers (IMs) (CYP2C19*1/*2 or *1/*3 genotype), and 10.0% in patients with poor metabolizers (PMs) (CYP2C19*2/*2, *2/*3, or *3/*3 genotype) (P<0.001). The one-year event-free survival was 97.8% in patients with EMs, 96.5% in patients with IMs, and 92.0% in patients with PMs (P = 0.014). Multivariate analysis confirmed the independent association of CYP2C19 loss-of-function allele carriage with ST (P = 0.009) and total mortality (P<0.05).

Conclusion

PM patients had an increased risk of ST, death, and MI after coronary stent placement in a Chinese population.  相似文献   

15.
In this work, we examined the impact of polymorphism in the cytochrome P450 (CYP) 3A5 gene, CYP3A5*1 (6986A > G, rs 776746), on the reduction in the lipid levels caused by simvastatin and atorvastatin. We studied 350 hyperlipidemic patients who received 10-40 mg of atorvastatin (n = 175) or simvastatin (n = 175) daily. Genotyping for CYP3A5 was done by PCR-RFLP analysis. Differences in the lipid profile before and after treatment were expressed as the % difference. The frequency of CYP3A5polymorphism was 13.4% for heterozygotes and 86.6% for homozygotes. Comparison of the responses to same dose of each drug showed that the highest % difference was associated with total cholesterol (TC) in subjects receiving atorvastatin 40 mg compared with simvastatin 40 mg (p = 0.048). However, comparison of the responses to equivalent doses of atorvastatin vs. simvastatin revealed no difference in the % change in any of the lipid parameters examined. In individuals with the same CYP3A5 genotype, a head to head comparison of the efficacy of the same dose of simvastatin vs. atorvastatin revealed an advantage for atorvastatin. For equivalent doses of atorvastatin vs. simvastatin there was no difference in the % change in any of the lipid parameters examined. Within the same genotype there was a significant difference in the % change related to the drug treatment.  相似文献   

16.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

17.
Carriage of the genetic combination encoding a high expression inhibitory Killer Immunoglobulin-like Receptor (KIR)3DL1 with its ligand, HLA-B*57 (*h/*y+B*57) is associated with slower time to AIDS and better HIV viral load control than being a Bw6 homozygote (Bw6hmz). Natural Killer (NK) cells from *h/*y+B*57 carriers receive potent educational signals through HLA-B*57 KIR3DL1 ligation leading to high functional potential. NK cells from Bw6hmz are not educated through KIR3DL1 because Bw6 antigens do not interact with this inhibitory receptor. To better understand the impact of KIR/HLA combinations on NK cell mediated anti-viral activity we measured NK cell mediated inhibition of HIV replication in autologous infected CD4 (iCD4) cells by assessing the frequency of p24 positive CD4 targets and supernatant levels of HIV p24 longitudinally in the presence versus absence of NK cells. Forty-seven HIV uninfected subjects were studied, including carriers of *h/*y+B*57, a low expression KIR3DL1 genotype with HLA-B*57 termed *l/*x+B*57, a genotype designated 3DS1+*80I and Bw6hmz. NK cells from *h/*y+B*57 carriers, like those from 3DS1+*80I subjects, inhibited HIV replication in autologous iCD4 cells better than those from Bw6hmz and *l/*x+B*57 carriers. Cell contact between NK and iCD4 cells activated NK cells to inhibit viral replication in a non-contact dependent fashion through secretion of CC-chemokines. iCD4 stimulated NK cells from *h/*y+B*57 and 3DS1+*80I carriers produced higher levels of CC-chemokines than those from Bw6hmz or *l/*x+B*57 carriers. Higher levels of CC-chemokines were produced by KIR3DL1+ than KIR3DL1 NK cells. We conclude that NK-mediated inhibition of viral replication in autologous iCD4 cells is partially due to a block at the level of HIV entry into new targets by secreted CC-chemokines.  相似文献   

18.
BACKGROUND: CYP1A1 is a gene involved in the high aryl hydrocarbon hydroxylase -inducible phenotype, which is a genetically-determined variation among individuals that has been associated with lung cancer risk. More specifically, CYP1A1 *2B and *4 polymorphisms have been associated with high susceptibility to lung cancer among cigarette smokers. MATERIALS AND METHODS: DNA was obtained from blood samples and we studied by PCR-RFLP the distribution of CYP1A1 *2B (n=248) and *4 (n=222) polymorphisms in healthy controls and 222 lung cancer patients from a Mexican population. RESULTS: Comparisons between groups showed an increased risk for lung cancer patients of *2B/*2B (18%; OR 7.6; 95% CI 3.0-19.2) and *4/ *4 genotypes (15%; OR 11.45; 95% CI 2.19-59.85) compared to the control group (1% for *2B/ *2B and 4.4% for *4/ *4). A significant association between lung cancer and homozygous *2B/ *2B passive smokers and *4/*4 ever (cigarettes) and passive smokers was also observed (p<0.05). Multivariate analysis revealed an increased risk for the *2B/*2B genotype (OR 6.83), as well as for *4/*4 (OR 28.8). CONCLUSION: The results of the study indicate a significant association between *2B/*2B and *4/*4 genotypes and the risk of developing lung cancer among Mexicans.  相似文献   

19.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P?0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P?0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P?0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

20.

Background

Drug-drug interactions resulting from the inhibition of an enzymatic process can have serious implications for clinical drug therapy. Quantification of the drugs internal exposure increase upon administration with an inhibitor requires understanding to avoid the drug reaching toxic thresholds. In this study, we aim to predict the effect of the CYP3A4 inhibitors, itraconazole (ITZ) and its primary metabolite, hydroxyitraconazole (OH-ITZ) on the pharmacokinetics of the anesthetic, midazolam (MDZ) and its metabolites, 1' hydroxymidazolam (1OH-MDZ) and 1' hydroxymidazolam glucuronide (1OH-MDZ-Glu) using mechanistic whole body physiologically-based pharmacokinetic simulation models. The model is build on MDZ, 1OH-MDZ and 1OH-MDZ-Glu plasma concentration time data experimentally determined in 19 CYP3A5 genotyped adult male individuals, who received MDZ intravenously in a basal state. The model is then used to predict MDZ, 1OH-MDZ and 1OH-MDZ-Glu concentrations in an CYP3A-inhibited state following ITZ administration.

Results

For the basal state model, three linked WB-PBPK models (MDZ, 1OH-MDZ, 1OH-MDZ-Glu) for each individual were elimination optimized that resulted in MDZ and metabolite plasma concentration time curves that matched individual observed clinical data. In vivo Km and Vmax optimized values for MDZ hydroxylation were similar to literature based in vitro measures. With the addition of the ITZ/OH-ITZ model to each individual coupled MDZ + metabolite model, the plasma concentration time curves were predicted to greatly increase the exposure of MDZ as well as to both increase exposure and significantly alter the plasma concentration time curves of the MDZ metabolites in comparison to the basal state curves. As compared to the observed clinical data, the inhibited state curves were generally well described although the simulated concentrations tended to exceed the experimental data between approximately 6 to 12 hours following MDZ administration. This deviations appeared to be greater in the CYP3A5 *1/*1 and CYP3A5 *1/*3 group than in the CYP3A5 *3/*3 group and was potentially the result of assuming that ITZ/OH-ITZ inhibits both CYP3A4 and CYP3A5, whereas in vitro inhibition is due to CYP3A4.

Conclusion

This study represents the first attempt to dynamically simulate metabolic enzymatic drug-drug interactions via coupled WB-PBPK models. The workflow described herein, basal state optimization followed by inhibition prediction, is novel and will provide a basis for the development of other inhibitor models that can be used to guide, interpret, and potentially replace clinical drug-drug interaction trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号