首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

2.
Soluble CD14 (sCD14), a 55-kDa glycoprotein found in plasma, has been shown to act as a shuttle for bacterial LPS and phospholipids, transporting LPS and phospholipid monomers from LPS aggregates or liposomes to high density lipoprotein particles. sCD14 has also been shown to mediate the transport of LPS and phosphatidylinositol into cells. Here we show that sCD14 mediates not only the influx but also the efflux of cellular phospholipids. Addition of sCD14 enhanced efflux of cellular phospholipids labeled with [(3)H]palmitic acid, [(3)H]oleic acid, or [(3)H]choline chloride from differentiated THP-1 monocytic cells. Efflux was dependent on the concentration of sCD14 added and was essentially complete in 30 min. The role of membrane-bound CD14 (mCD14) in lipid efflux was assessed using matched pairs of cell lines that express or fail to express this protein. While efflux was very dependent on mCD14 in U373 cells, it was not dependent on mCD14 in Chinese hamster ovary cells, suggesting a role for additional cellular proteins in determining the pathway of phospholipid efflux. A deletion mutant of sCD14 lacking the LPS binding site had less ability to efflux phospholipids than intact sCD14, suggesting that this site is needed for CD14 to serve in phospholipid transport. [(3)H]Palmitate-labeled lipids released by sCD14 were precipitated with anti-CD14 then analyzed by HPLC. Phosphatidylcholine was the dominant phospholipid exported and bound to sCD14. These results demonstrate that sCD14 mediates efflux of phospholipids from cells and suggest that sCD14 contributes to phospholipid transport in blood.  相似文献   

3.
In pancreatic acinar cells prelabeled with either 32Pi or myo-[3H]inositol, arachidonic acid (10-50 microM) rapidly decreased the steady-state levels of [32P]phosphatidylinositol 4',5'-bisphosphate [( 32P]PtdIns4,5P2) and inhibited carbachol-stimulated accumulation of [3H]inositol trisphosphate [( 3H]InsP3). Both actions of arachidonic acid were rapidly reversed by bovine serum albumin (BSA). Indomethacin and nordihydoguaiaretic acid failed to block the inhibitory effects of arachidonic acid on [32P]PtdIns4,5P2 levels. Arachidonic acid (10-50 microM) also caused a prompt depletion of cellular ATP which was rapidly reversed by BSA. The ATP-depleting action of arachidonate paralleled in terms of concentration dependence and time course its inhibitory effects on [32P]PtdIns4,5P2 and [3H]InsP3 levels. Exposure of acinar cells to 50 microM arachidonic acid produced an increase in oxygen consumption which exceeded that elicited by either carbachol or ionomycin. Arachidonic acid (10-50 microM) also caused a concentration-dependent rise in cytosolic Ca2+, which was partially obtunded by Ca2+ deprivation. A proposed mechanism involving arachidonic acid as a negative feedback regulator of polyphosphoinositide turnover in exocrine pancreas is discussed.  相似文献   

4.
The incorporation of [3H]arachidonate [( 3H]AA) and [14C]eicosapentaenoate [( 14C]EPA) into glycerophospholipids was studied in isolated brain cells from rainbow trout, a teleost fish whose lipids are rich in (n-3) polyunsaturated fatty acids (PUFAs). EPA was incorporated into total lipid to a greater extent than AA, but the incorporation of both PUFAs into total glycerophospholipids was almost identical. The incorporation of both AA and EPA was greatest into phosphatidylethanolamine (PE). However, when expressed per milligram of individual phosphoglycerides, both AA and EPA were preferentially incorporated into phosphatidylinositol (PI), the preference being significantly greater with AA. On the same basis, significantly more EPA than AA was incorporated into phosphatidylcholine (PC). When double-labelled cells were challenged with calcium ionophore A23187, the 3H and 14C released from the cells closely paralleled each other, peaking at 10 min after addition of ionophore. The 12-monohydroxylated derivative was the pre-dominant lipoxygenase product from both AA and EPA with a rank order of 12-hydroxyeicosatetraenoic acid (12-HETE) greater than leukotriene B4 (LTB4) greater than 5-HETE greater than 15-HETE for the AA products and 12-hydroxyeicosapentaenoic acid (12-HEPE) greater than 5-HEPE greater than LTB5 greater than 15 HEPE for EPA products. The 3H/14C (dpm/dpm) ratios in the glycerophospholipids, total released radioactivity, and the lipoxygenase products suggested that PC rather than PI was the likely source of eicosanoid precursors in trout brain cells.  相似文献   

5.
Protein-lipid interactions are important for protein targeting, signal transduction, lipid transport, and the maintenance of cellular compartments and membranes. Specific lipid-binding protein domains, such as PH, FYVE, PX, PHD, C2 and SEC14 homology domains, mediate interactions between proteins and specific phospholipids. We recently cloned a 45-kDa protein from rat olfactory epithelium, which is homologous to the yeast Sec14p phosphatidylinositol (PtdIns) transfer protein and we report here that this protein binds to PtdIns(3,4,5)P3 and far weaker to less phosphorylated derivatives of PtdIns. Expression of the p45 protein in COS-1 cells resulted in accumulation of the protein in secretory vesicles and in the extracellular space. The secreted material contained PtdIns(3,4,5)P3. Our findings are the first report of a Sec14p-like protein involved in transport out of a cell and, to the best of our knowledge, inositol-containing phospholipids have not previously been detected in the extracellular space. Our findings suggest that p45 and phosphoinositides may participate in the formation of the protective mucus on nasal epithelium.  相似文献   

6.
When icosanoid-producing cells are stimulated by an agonist, 2-10% of total cellular arachidonate is released from phospholipids, and a variable percentage of the released arachidonate is subsequently converted into icosanoids. We used a mouse fibrosarcoma cell line (HSDM1C1) which synthesizes prostaglandin E2 in response to bradykinin stimulation to address the following questions: 1) upon cell stimulation is newly incorporated arachidonate preferentially released from phospholipids over previously incorporated arachidonate and 2) is there a corresponding change in phospholipid or membrane compartmentation of arachidonate to explain preferential release of newly incorporated arachidonate? To study changes in the availability of arachidonate for release from phospholipids, we incubated HSDM1C1 cells with 0.67 microM [14C]arachidonate for 15 min and chased the pulse of radiolabeled arachidonate with normal serum fatty acids. We found that of the [14C]arachidonate incorporated into phospholipids during the 15-min pulse, the percent released upon stimulation decreased nearly 3-fold from 8.9 +/- 0.5% at 5 min of chase to 3.6 +/- 0.2% (mean +/- S.E., n = 6, P less than 0.001) after only 60 min of chase. Percent release of arachidonate from nonpulsed controls was 3-4%. Although arachidonate release from phospholipids decreased significantly after 60 min of chase, the arachidonate which was released always originated predominantly from phosphatidylinositol. There was no decrease in the activities of enzymes required for arachidonate release during this time period. We also observed that throughout the period of the chase, the radiolabeled arachidonate remained esterified to the same phospholipid class into which it was initially incorporated (approximately 40% of [14C]arachidonate in diacyl phosphatidylcholine, 40% in phosphatidylinositol, and 15% in diacyl phosphatidylethanolamine. In cell fractionation experiments, we found that after 1-3 h of chase, [14C]arachidonate decreased in subcellular fractions containing nuclei, as it became progressively unavailable for release from phospholipids. Thus, our results indicate that 1) upon cell stimulation, the most recently incorporated pool of arachidonate, which is in high concentration in the nuclear membrane, is preferentially released and that 2) arachidonate rapidly moves out of the nuclear membrane into a less releasable pool while remaining esterified to the phospholipid moiety into which it was initially incorporated. This study indicates that the subcellular compartmentation of arachidonate has a marked influence on the cellular metabolism of arachidonate.  相似文献   

7.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

8.
Eicosanoid biosynthesis was examined with a human megakaryocytic cell line (Dami). Megakaryocytes incubated with [1-14C]arachidonic acid and either ionophore A23187 or thrombin generated both thromboxane and 12-hydroxyheptadecatrienoic acid (HHTrE). Exposure to phorbol myristate acetate (PMA) for 1 through 9 days induced differentiation and revealed an increase in the conversion of [1-14C]arachidonate to cyclooxygenase- and lipoxygenase (LO)-derived products. The LO-derived product was identified as 12S-HETE by its physical characteristics including GC/MS and chiral column SP-HPLC. PMA-treated Dami cells did not generate 5-HETE, leukotrienes or lipoxins from exogenous arachidonic acid while they did convert leukotriene A4 (LTA4) to lipoxin A4, lipoxin B4 and their respective all-trans isomers. In addition, COS-M6 cells transfected with a human 12-lipoxygenase cDNA and incubated with either arachidonic acid or LTA4 generated 12-HETE and lipoxins, respectively. The lipoxin profile generated by transfected COS-M6 cells incubated with LTA4 was similar to that generated by the PMA-treated Dami cells. Results indicate that human megakaryocytes can transform arachidonate and LTA4 to bioactive eicosanoids and that the 12-lipoxygenase appears upon further differentiation of these cells. In addition, they indicate that the 12-LO of human megakaryocytes and the 12-LO expressed by transfected COS cells can generate both lipoxins A4 and B4. Together they suggest that the human 12-LO can serve as a model of LX-synthetase activity with LTA4.  相似文献   

9.
Macrophages were isolated from the dialysis fluid of patients undergoing continuous ambulatory peritoneal dialysis and separated by gradient centrifugation and purification on 50% Percoll. The cells were prelabeled with [14C]arachidonic acid for 1.5 h. The labeled cells were then incubated with calcium ionophore A23187 (1 microM), serum-treated zymosan (200 micrograms/ml), and a lipoxygenase inhibitor, nordihydroguairetic acid (1 X 10(-5) M). The arachidonate metabolites in the medium were separated on Sep-Pak columns, and finally purified by reverse-phase high-pressure liquid chromatography (HPLC). The labeled products co-chromatographed with authentic leukotriene B4 and leukotriene C4 standards. Serum-treated zymosan and A23187 significantly stimulated and nordihydroguairetic acid significantly inhibited leukotriene synthesis. Leukotriene D4 was not detected, which suggests that these cells contain low gamma-glutamyltranspeptidase or high dipeptidase activity. These results establish, for the first time, that human peritoneal macrophages synthesize the lipoxygenase products, leukotriene B4 and leukotriene C4.  相似文献   

10.
Stimulation of mouse peritoneal macrophages with zymosan or bacteria results in activation of 85-kDa cytosolic phospholipase A(2) (cPLA(2)) and release of arachidonate. We have investigated the role of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the signalling leading to activation of cPLA(2) and release of arachidonate in response to zymosan and the bacterium Prevotella intermedia. The specific PtdIns 3-kinase inhibitor wortmannin completely inhibited zymosan- and bacteria-induced release of arachidonate with an IC(50) value of 10-20 nM. Wortmannin also completely inhibited the zymosan-induced activation of cPLA(2), while the cPLA(2) activation by bacteria was partially inhibited by about 50%. Further experiments showed that zymosan-induced activation of extracellular signal-regulated kinase was inhibited, and bacteria-induced activation of the kinase strongly reduced, in the presence of wortmannin. Also zymosan-induced activation of p38 mitogen-activated protein kinase was inhibited by wortmannin, while p38 activation induced by bacteria was not. The zymosan- and bacteria-induced activation of phospholipase C, as determined by the generation of inositol phosphates, was also inhibited by wortmannin. Moreover, zymosan caused activation of PtdIns 3-kinase, which was totally inhibited by wortmannin. In contrast to zymosan and bacteria, arachidonate release induced by calcium ionophore alone, or further amplified by phorbol ester, was not sensitive to wortmannin. These results suggest that PtdIns 3-kinase constitutes a critical component in the zymosan- and bacteria-induced signalling leading to release of arachidonate and that PtdIns 3-kinase is positioned upstream of phospholipase C in this pathway.  相似文献   

11.
The SEC14 gene encodes an essential phosphatidylinositol (PtdIns) transfer protein required for formation of Golgi-derived secretory vesicles in yeast. Suppressor mutations that rescue temperature-sensitive sec14 mutants provide an approach for determining the role of Sec14p in secretion. One suppressor, sac1-22, causes accumulation of PtdIns(4)P. SAC1 encodes a phosphatase that can hydrolyze PtdIns(4)P and certain other phosphoinositides. These findings suggest that PtdIns(4)P is limiting in sec14 cells and that elevation of PtdIns(4)P production can suppress the secretory defect. Correspondingly, we found that PtdIns(4)P levels were decreased significantly in sec14-3 mutants shifted to 37 degrees C and that sec14-3 cells could grow at an otherwise nonpermissive temperature (34 degrees C) when carrying a plasmid overexpressing PIK1, encoding one of two essential PtdIns 4-kinases. This effect is specific because overexpression of the other PtdIns 4-kinase gene (STT4) or a PtdIns 3-kinase gene (VPS34) did not rescue sec14-3 cells. To further address Pik1p function in secretion, two different pik1(ts) mutants were examined. Upon shift to restrictive temperature (37 degrees C), the PtdIns(4)P levels dropped by about 60% in both pik1(ts) strains within 1 h. During the same period, cells displayed a reduction (40-50%) in release of a secreted enzyme (invertase). However, similar treatment did not effect maturation of a vacuolar enzyme (carboxypeptidase Y). These findings indicate that, first, PtdIns(4)P limitation is a major contributing factor to the secretory defect in sec14 cells; second, Sec14p function is coupled to the action of Pik1p, and; third, PtdIns(4)P has an important role in the Golgi-to-plasma membrane stage of secretion.  相似文献   

12.
An 84-kDa group VI phospholipase A2 (iPLA2) that does not require Ca2+ for catalysis has been cloned from Chinese hamster ovary cells, murine P388D1 cells, and pancreatic islet beta-cells. A housekeeping role for iPLA2 in generating lysophosphatidylcholine (LPC) acceptors for arachidonic acid incorporation into phosphatidylcholine (PC) has been proposed because iPLA2 inhibition reduces LPC levels and suppresses arachidonate incorporation and phospholipid remodeling in P388D1 cells. Because islet beta-cell phospholipids are enriched in arachidonate, we have examined the role of iPLA2 in arachidonate incorporation into islets and INS-1 insulinoma cells. Inhibition of iPLA2 with a bromoenol lactone (BEL) suicide substrate did not suppress and generally enhanced [3H]arachidonate incorporation into these cells in the presence or absence of extracellular calcium at varied time points and BEL concentrations. Arachidonate incorporation into islet phospholipids involved deacylation-reacylation and not de novo synthesis, as indicated by experiments with varied extracellular glucose concentrations and by examining [14C]glucose incorporation into phospholipids. BEL also inhibited islet cytosolic phosphatidate phosphohydrolase (PAPH), but the PAPH inhibitor propranolol did not affect arachidonate incorporation into islet or INS-1 cell phospholipids. Inhibition of islet iPLA2 did not alter the phospholipid head-group classes into which [3H]arachidonate was initially incorporated or its subsequent transfer from PC to other lipids. Electrospray ionization mass spectrometric measurements indicated that inhibition of INS-1 cell iPLA2 accelerated arachidonate incorporation into PC and that inhibition of islet iPLA2 reduced LPC levels by 25%, suggesting that LPC mass does not limit arachidonate incorporation into islet PC. Gas chromatography/mass spectrometry measurements indicated that BEL but not propranolol suppressed insulin secretagogue-induced hydrolysis of arachidonate from islet phospholipids. In islets and INS-1 cells, iPLA2 is thus not required for arachidonate incorporation or phospholipid remodeling and may play other roles in these cells.  相似文献   

13.
We analyzed the ability of a diverse set of mammalian secreted phospholipase A(2) (sPLA(2)) to release arachidonate for lipid mediator generation in two transfected cell lines. In human embryonic kidney 293 cells, the heparin-binding enzymes sPLA(2)-IIA, -IID, and -V promote stimulus-dependent arachidonic acid release and prostaglandin E(2) production in a manner dependent on the heparan sulfate proteoglycan glypican. In contrast, sPLA(2)-IB, -IIC, and -IIE, which bind weakly or not at all to heparanoids, fail to elicit arachidonate release, and addition of a heparin binding site to sPLA(2)-IIC allows it to release arachidonate. Heparin nonbinding sPLA(2)-X liberates arachidonic acid most likely from the phosphatidylcholine-rich outer plasma membrane in a glypican-independent manner. In rat mastocytoma RBL-2H3 cells that lack glypican, sPLA(2)-V and -X, which are unique among sPLA(2)s in being able to hydrolyze phosphatidylcholine-rich membranes, act most likely on the extracellular face of the plasma membrane to markedly augment IgE-dependent immediate production of leukotriene C(4) and platelet-activating factor. sPLA(2)-IB, -IIA, -IIC, -IID, and -IIE exert minimal effects in RBL-2H3 cells. These results are also supported by studies with sPLA(2) mutants and immunocytostaining and reveal that sPLA(2)-dependent lipid mediator generation occur by distinct (heparanoid-dependent and -independent) mechanisms in HEK293 and RBL-2H3 cells.  相似文献   

14.
The incubation of double-labelled [( 14C]-glycerol and [3H]-myoinositol) keratinocytes with 13-cis retinoic acid induced the transient and simultaneous release of [3H]-inositol trisphosphate ([3H]-InsP3) and [14C]-diacylglycerol ([14C]-DAG) indicating that a possible mode of action of this retinoid on murine keratinocytes may be at least in part the early transient release of the two putative messengers (InsP3 and DAG) from phosphatidylinositol-4,5 bisphosphate (PtdIns4, 5P2). In contrast, the preincubation of the keratinocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA) prior to incubation with 13-cis-RA suppressed the 13-cis-RA-induced release of [3H]-InsP3 and [14C]-DAG. The specificity of the TPA effect was established by the lack of effect of the biologically inactive 4 alpha-phorbol 12, 13-didecanoate. Furthermore, the incubation of the TPA-primed keratinocytes with 13-cis-RA caused a delayed and sustained accumulation of [14C]-DAG. An exploration of the source of this late release of [14C]-DAG revealed that this [14C]-DAG was released from non-inositol containing phospholipids, particularly, phosphatidylcholine. This latter DAG released in the TPA-primed cells correlated with the translocation of the cytoplasmic protein kinase C (PKC) activity to the membrane associated PKC activity. Taken together, these results suggest that alteration of PKC activity, presumably induced by DAG released from non-inositol phospholipids, may play a major role in the TPA-induced negative feedback inhibition of 13-cis RA-induced hydrolysis of keratinocyte PtdIns4, 5P2.  相似文献   

15.
Purified human eosinophils were challenged with N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4, platelet-activating-factor, valyl-glycyl-seryl-glutamic acid, phorbol myristate acetate, zymosan, opsonized zymosan and the calcium ionophore A23187 to induce leukotriene synthesis. Reversed-phase high performance liquid chromatography analysis demonstrated the almost exclusive synthesis of leukotriene C4 by eosinophils of 11 healthy donors after challenge with opsonized zymosan [(22 +/- 4) X 10(6) molecules LTC4/cell, mean +/- SE] or the calcium ionophore A23187 [(54 +/- 7) X 10(6) molecules LTC4/cell, mean +/- SE]. The other agents were not capable of inducing leukotriene formation. When in addition to opsonized zymosan N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor were added a significant increase of the leukotriene C4 synthesis by eosinophils was observed. These results suggest that eosinophils might be triggered to produce considerable amounts of the spasmogenic leukotriene C4 in vivo by C3b- and/or IgG-mediated mechanisms e.g. phagocytosis.  相似文献   

16.
When human platelets are incubated with 500 nM-PAF-acether (platelet-activating factor. 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) under equilibrium conditions (60 min, 22 degrees C, non-stirred suspensions), two classes of fibrinogen binding sites are exposed: one class with a high affinity [Kd (7.2 +/- 2.1) X 10(-8) M, 2367 +/- 485 sites/platelet, n = 9] and one class with a low affinity [Kd (5.9 +/- 2.4) X 10(-7) M, 26972 +/- 8267 sites/platelet]. Preincubation with inhibitors of cyclo-oxygenase (acetylsalicylic acid, indomethacin) or thromboxane synthetase (UK 38.485) completely abolishes high-affinity binding, leaving low-affinity binding unchanged. In contrast, ADP scavengers (phosphocreatine/creatine kinase or phosphoenol pyruvate/pyruvate kinase) completely prevent low-affinity binding, leaving high-affinity binding unaltered. Initial binding studies (2-10 min incubation) confirm these findings with a major part of the binding being sensitive to ADP scavengers, a minor part sensitive to indomethacin and complete blockade with both inhibitors. Increasing the temperature to 37 degrees C decreases the number of low affinity-binding sites 6-fold without changing high-affinity binding. Aggregation, measured as the rate of single platelet disappearance, then depends on high-affinity binding at 10 nM-fibrinogen or less, whereas at 100 nM-fibrinogen or more low-affinity binding becomes predominant. These findings point at considerable platelet activation during binding experiments. However, arachidonate metabolism [( 3H]arachidonate mobilization and thromboxane synthesis) and secretion [( 14C]serotonin and beta-thromboglobulin) are about 10% or less of the amounts found under optimal conditions (5 units of thrombin/ml 37 degrees C, stirring). We conclude that PAF-acether induces little platelet activation under binding conditions. The amounts of thromboxane A2 and secreted ADP, however, are sufficient for initiating high- and low-affinity fibrinogen binding via mutually independent mechanisms.  相似文献   

17.
There is ample evidence that both acid (ASMase) and neutral (NSMase) sphingomyelinases play a role in cell death so inhibitors of either enzyme could have significant value as protectors against neurodegeneration. We used a fluorogenic sphingomyelinase substrate, 6-hexadecanoylamino-4-methylumbelliferyl-phosphorylcholine, and a [(14)C]choline-labeled sphingomyelin substrate to screen large numbers of phosphocompounds for inhibition of ASMase in extracts of human oligodendroglioma cells (HOG) and neonatal rat oligodendrocytes. Non-competitive inhibition was observed with inorganic phosphate and AMP, which was a more potent inhibitor of ASMase than cyclic AMP, ADP or ATP. However, other nucleotide phosphates, sugar phosphates, nucleotide sugars and glycerol phosphate did not inhibit ASMase. Our key finding was that phosphatidyl-myo-inositol 3,4,5-triphosphate [PtdIns (3,4,5)P(3)] was a much more potent inhibitor of ASMase than lysophosphatidic acid or phosphatidyl-myo-inositol 4,5-diphosphate [PtdIns(4,5)P(2)]. When PtdIns(3,4,5)P(3) was added to cultured cells we observed 50% inhibition of ASMase but no inhibition of other lysosomal hydrolases. After transfection of HOG cells with the tumor supressor phosphatase and tensin homolog protein (PTEN), which hydrolyses PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), we observed a two-fold increase in ASMase activity. Furthermore, the phosphatidylinositol-3-kinase inhibitor wortmannin (which reduces PtdIns(3,4,5)P(3) levels) also resulted in activation of ASMase. We propose that the small amount of ASMase activity associated with detergent-resistant cell membranes (Rafts) is regulated by PtdIns(3,4,5)P(3) and is most likely involved in receptor clustering and capping.  相似文献   

18.
The effect of (R,R,R)-alpha-tocopherol on agonist-stimulated arachidonate release and cellular lipids was investigated in cultured human umbilical cord endothelial cells. Endothelial cells in culture incorporate added tocopherol in a dose-dependent manner at both physiological (23.2 microM) or pharmacological (92.8 microM) concentrations which were well tolerated by the cells, as judged by unaltered cell number and viability. Two experiments were conducted in which cells were either incubated with (R,R,R)-alpha-tocopherol followed by labelling with [1-14C]arachidonic acid or they were labelled with arachidonate followed by incubation with tocopherol. Irrespective of the sequence of incubation with arachidonate and tocopherol, (R,R,R)-alpha-tocopherol-enriched cells released significantly more labelled arachidonate when stimulated with thrombin (2.5 U/ml) or ionophore A23187 (1 microM) for 10 min. The magnitude of [1-14C]arachidonate release was higher from ionophore A23187 stimulation than from thrombin stimulation, but the trend of increased arachidonate release in tocopherol-enriched cells was the same. Results from these studies demonstrate that (R,R,R)-alpha-tocopherol can stimulate arachidonate release in human endothelial cells. This observation is in direct contrast to the role of tocopherol, which has been shown to inhibit platelet and cardiac phospholipase A2 activity in rats, and to reduce thrombin-stimulated thromboxane release in rat platelets.  相似文献   

19.
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.  相似文献   

20.
L-Thyroxine rapidly stimulated the accumulation of diacylglycerols in isolated hepatocytes and in liver when lipids were prelabeled with [14C]oleic acid or with [14C]CH3COONa. Perfusion of the liver of hypothyroid animals with L-thyroxine-containing solution or incubation of liver fragments with the hormone increased the content of diacylglycerols in the liver cells. The increase in [14C]diacylglycerol level in the liver cells was accompanied by a decrease in the level of [14C]phosphatidylcholine, whereas contents of other 14C-labeled phospholipids, such as phosphatidylethanolamine, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate (PtdIns4P), and phosphatidylinositol-4,5-bis-phosphate (PtdIns(4,5)P2), and of 14C-labeled fatty acids were the same as in the control. The L-thyroxine-induced accumulation of diacylglycerols in hepatocytes was not affected by neomycin but was inhibited by propranolol. Incubation of hepatocytes prelabeled with [14C]oleic acid with L-thyroxine and ethanol (300 mM) was accompanied by generation and accumulation of [14C]phosphatidylethanol that was partially suppressed by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7). L-Thyroxine was responsible for the translocation of protein kinase C from the cytosol into the membrane fraction and for a many-fold activation of the membrane-bound enzyme. D-Thyroxine failed to affect the generation of diacylglycerols in hepatocytes and the activity of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号