首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Human polymorphonuclear leukocytes (PMN) were found to tightly adhere on endothelial (lines EAhy926 and ECV304) and collagen surfaces under the influence of the chemotherapeutic drug suramin. This was observed by scanning electron microscopy and quantitated by myeloperoxidase assays. Suramin also inhibited Ca2+ ionophore A23187-stimulated leukotriene (LT) synthesis in PMN interaction with endothelial cells or with collagen surface. Suramin decreased the release of radiolabeled arachidonic acid (AA) and 5-lip-oxygenase (5-LO) metabolites by prelabeled PMN stimulated with A23187. Using agents releasing the suramin-stimulated adhesion namely jasplakonolide and dextran sulfate, we observed a reversal of the suramin effect on leukotriene synthesis. Jasplakonolide released the adhesion of PMN on endothelial and collagen-coated surfaces and restored 5-LO activity. Dextran-sulfate released adhesion on collagen-coated surfaces and abolished suramin inhibition. Arachidonate could also overcome adhesion and inhibition of 5-LO. We conclude that suramin-induced tight attachment of PMN on to solid surfaces lead to decreased leukotriene synthesis during subsequent A23187 stimulation in the absence of exogenous substrates.  相似文献   

2.
Suramin is a polysulphonated naphthylurea with inhibitory activity against the human secreted group IIA phospholipase A(2) (hsPLA2GIIA), and we have investigated suramin binding to recombinant hsPLA2GIIA using site-directed mutagenesis and molecular dynamics (MD) simulations. The changes in suramin binding affinity of 13 cationic residue mutants of the hsPLA2GIIA was strongly correlated with alterations in the inhibition of membrane damaging activity of the protein. Suramin binding to hsPLA2GIIA was also studied by MD simulations, which demonstrated that altered intermolecular potential energy of the suramin/mutant complexes was a reliable indicator of affinity change. Although residues in the C-terminal region play a major role in the stabilization of the hsPLA2GIIA/suramin complex, attractive and repulsive hydrophobic and electrostatic interactions with residues throughout the protein together with the adoption of a bent suramin conformation, all contribute to the stability of the complex. Analysis of the hsPLA2GIIA/suramin interactions allows the prediction of the properties of suramin analogues with improved binding and higher affinities which may be candidates for novel phospholipase A(2) inhibitors.  相似文献   

3.
Suramin is a polysulphonated napthylurea used as an antiprotozoal/anthelminitic drug, which also inhibits a broad range of enzymes. Suramin binding to recombinant human secreted group IIA phospholipase A2 (hsPLA2GIIA) was investigated by molecular dynamics simulations (MD) and isothermal titration calorimetry (ITC). MD indicated two possible bound suramin conformations mediated by hydrophobic and electrostatic interactions with amino-acids in three regions of the protein, namely the active-site and residues located in the N- and C-termini, respectively. All three binding sites are located on the phospholipid membrane recognition surface, suggesting that suramin may inhibit the enzyme, and indeed a 90% reduction in hydrolytic activity was observed in the presence of 100 nM suramin. These results correlated with ITC data, which demonstrated 2.7 suramin binding sites on the hsPLA2GIIA, and indicates that suramin represents a novel class of phospholipase A2 inhibitor.  相似文献   

4.
Neoadjuvant chemotherapy in osteosarcoma improves the survival dramatically, but there is currents drug resistance in about 25% of patients, leading researchers to investigate alternative therapy forms. Suramin has in the last two decades been used as salvage therapy in some cancers. This study was undertaken to investigate suramin as a possible salvage therapy in osteosarcoma. The effect of suramin on three human osteosarcoma cell lines (MG-63, HOS and SaOS-2) and three primary osteosarcoma cell lines isolated from biopsies was investigated. Suramin significantly inhibited cell proliferation, determined by 3H-thymidine incorporation, of osteosarcoma cells at a dose ranging from 250 to 500 microg/ml. Suramin decreased the secretion of alkaline-phosphatase after stimulation by 1,25-dihydroxy-Vitamin D(3) up to 50% and decreased telomerase activity by up to 40%. The data demonstrate that suramin has marked in vitro effects on human osteosarcoma cells supporting further clinical investigation.  相似文献   

5.
Here we report that suramin sensitizes LM217, MDA-MB-468, T98G and A431 cells to ionizing radiation. Suramin sensitized cells to X radiation in a dose-dependent fashion, and longer exposure to suramin before X irradiation resulted in more efficient sensitization. The dose-modifying factors calculated from the survival curves were 1.18 in LM217 cells and 1.37 in MDA-MB-468 cells. Suramin did not sensitize Scid cells that had no DNA-dependent protein kinase activity. Suramin inhibited DNA-dependent protein kinase activity in vitro and in vivo. The concentration of suramin resulting in 50% inhibition in vitro was 1.7 microM in LM217 cells and 2.4 microM in MDA-MB-468 cells. Exposure of LM217 and MDA-MB-468 cells to suramin did not affect the level of Ku70 (G22P1) or Ku80 (XRCC5), but it increased the level of DNA-PKcs(PRKDC). Suramin did not sensitize LM217 or MDA-MB-468 cells to UV radiation. Suramin's effects were not caused by accumulation of cells in a specific phase of the cell cycle. These results suggest that suramin sensitizes cells to ionizing radiation by inhibiting DNA-dependent protein kinase activity.  相似文献   

6.
Suramin inhibited protein kinase C (PKC) type I-III activity in a concentration-dependent manner. Similar inhibitory effects were observed with M-kinase, the constitutively active catalytic fragment of PKC, and autophosphorylation of PKC types I-III. Kinetic experiments indicated that suramin competitively inhibits activity with respect to ATP (Ki = 17, 27, and 31 microM, respectively) and that it can also inhibit by interaction with the substrate histone III-S. With protamine as the Pi acceptor, suramin inhibition was dependent on lipid, being approximately 4-fold less sensitive to inhibition in the absence of phosphatidylserine and diacylglycerol than in their presence. Suramin at low concentrations (10-40 microM), in the presence of Ca2+ and absence of lipid, was able to stimulate kinase activity (approximately 200-400%) in a type-dependent manner and at higher concentrations inhibited activity with histone III-S as substrate. These results indicate that suramin, a hexa-anionic hydrophobic compound, can act as a negatively charged phospholipid analog in activating PKC in the presence of Ca2+ and absence of lipid and can inhibit Ca2+/phosphatidylserine/diacylglycerol-stimulated kinase activity at higher concentrations by competing with ATP or by interaction with the exogenous substrate. Suramin inhibited cAMP-dependent protein kinase much less potently (IC50 = 656 microM) than PKC. The ability of suramin to inhibit PKC-mediated processes in intact cells was tested using the phorbol ester-stimulated respiratory burst of neutrophils as a model system. The respiratory burst of human neutrophils, when preincubated with suramin and then stimulated with phorbol ester, was inhibited in a concentration-dependent manner, suggesting that suramin may also be able to inhibit PKC-mediated processes in intact cells.  相似文献   

7.
Suramin has been shown to inhibit the binding of various growth factors to their receptors. Shionogi Carcinoma 115 cells (SC 115 cells) and Chiba Subline 2 cells (CS 2 cells) are clones of an androgen-responsive mouse tumor cell and its autonomous subline, respectively. Since the growth of SC 115 and CS 2 cells are assumed to be regulated by their own fibroblast growth factor (FGF)-like growth factors, the present study was undertaken to examine the effect of suramin on these cells. Suramin inhibited the growth of SC 115 and CS 2 cells in a dose dependent manner. The inhibition of suramin was reversible up to 50 micrograms/ml. Suramin reversibly changed the shape of these cells from fibroblast-like to polygonal and epithelial-like ones, and inhibited 3H-thymidine incorporation into these cells which was evoked by acidic and basic FGFs, and conditioned medium obtained from CS 2 cells. The binding of 125I-basic FGF to SC 115 and CS 2 cells was inhibited by suramin. However, suramin had no effect on growth factor production and the hst-1 gene expression on CS 2 cells. In conclusion, suramin inhibited the autocrine and paracrine growth of SC 115 and CS 2 cells by blocking the binding of autocrine growth factors to their receptors.  相似文献   

8.
Nature of the interaction of growth factors with suramin.   总被引:5,自引:0,他引:5  
Suramin inhibits the binding of a variety of growth factors to their cell surface receptors. The direct interaction of suramin with acidic fibroblast growth factor has been detected by the enhancement of the drug's fluorescence in the presence of the protein with the maximum effect occurring at a molar ratio of suramin to aFGF of 2:1. This interaction stabilizes aFGF to thermal denaturation and partially protects a free thiol in its polyanion binding site from oxidation. The binding of suramin to aFGF also induces aggregation of the growth factor to at least a hexameric state as detected by static and dynamic light scattering as well as by gel filtration studies. Both CD and amide I' FTIR spectra of aFGF in the presence and absence of suramin suggest that the drug may also be causing a small conformational change in the growth factor. Suramin produces an even greater aggregation of bFGF and PDGF but not of EGF or IGF-1. Evidence for a suramin-induced conformational change in IGF-1 but not EGF is found by CD, however. It is concluded that suramin binds to many growth factors and that this induces microaggregation and, in some cases, conformational changes. In the case of aFGF, suramin interacts at or near its heparin binding site. The relationship between these phenomena and the anti-growth factor activity of suramin remains to be clearly elucidated.  相似文献   

9.
10.
Suramin, a polyanionic compound, has previously been shown to dissociate platelet-derived growth factor (PDGF) from its receptor. In the present study suramin was found to inhibit the growth of sparse cultures of AKR-2B cells in fetal bovine serum (FBS)-supplemented medium in a dose-dependent, reversible fashion. Suramin also inhibited the ability of FBS, transforming growth factor beta (TGF beta), heparin-binding growth factor type-2 (HBGF-2), and epidermal growth factor (EGF) to stimulate DNA synthesis in density-arrested cultures of AKR-2B cells. The inhibition of growth factor-stimulated mitogenicity was directly correlated to the dose of suramin required to inhibit the binding of 125I-labeled TGF beta, HBGF-2, and EGF to their cell surface receptors. Suramin affected TGF beta and HBGF-2-related events at a 10-15-fold lower dose than that required for EGF-related events. It was also noted that suramin inhibited TGF beta-stimulated soft agar colony formation of AKR-2B (clone 84A) cells as well as the spontaneous colony formation of AKR-MCA cells, a chemically transformed derivative of AKR-2B cells. This demonstrates that suramin's spectrum of action for growth factors and their receptors should be extended to include TGF beta, HBGF-2, and EGF as well as PDGF. The data further suggest that the spontaneous growth of AKR-MCA cells in soft agar is dependent on growth factor binding to cell surface receptors.  相似文献   

11.
Kathir KM  Kumar TK  Yu C 《Biochemistry》2006,45(3):899-906
Fibroblast growth factors (FGFs) play crucial roles in the regulation of key cellular processes such as angiogenesis, differentiation, and tumor growth. Suramin, a polysulfonated naphthylurea, is known to be a potent inhibitor of FGF-induced angiogenesis. Using isothermal titration calorimetry, we demonstrate that human acidic fibroblast growth factor (hFGF-1) binds to suramin with high affinity in the nanomolar range. The suramin:hFGF-1 binding stoichiometry is estimated to be 2:1. Size-exclusion chromatography data reveal that suramin oligomerizes hFGF-1 to form a stable tetramer. Thermal unfolding experiments monitored by steady state fluorescence, and limited trypsin digestion analysis data suggest that suramin-induced oligomerization of hFGF-1 occurs in two steps. The first step involves the binding of suramin at specific sites on the protein. Two molecules of suramin appear to bind simultaneously to one molecule of hFGF-1. Binding of suramin possibly involves formation of solvent-exposed nonpolar surfaces in hFGF-1. In the second step, FGF appears to oligomerize through coalescence of the solvent-accessible nonpolar surfaces. Results of the NMR experiments reveal that suramin binds to residues in the heparin binding pocket as well as to residues involved in FGF receptor binding. On the basis of the results of this study, we propose a model to explain the molecular mechanism(s) underlying the antimitogenic activity of suramin. To our knowledge, this is the first study in which suramin interaction sites on FGF have been characterized.  相似文献   

12.
Candida albicans is an opportunistic pathogen that is of growing medical importance because it causes superficial, mucosal and systemic infections in susceptible individuals. Here, the effect of suramin, a polysulfonated naphthylurea derivative, on C. albicans development and virulence was evaluated. Firstly, it was demonstrated that suramin (500 microM) arrested its growth, showing a fungicidal action dependent on cell number. Suramin treatment caused profound changes in the yeast ultrastructure as shown by transmission electron microscopy. The more important changes were the enlargement of the fungi cytoplasmic vacuoles, the appearance of yeasts with an empty cytoplasm resembling ghost cells and a reduction in cell wall thickness. Suramin also blocked the transformation of yeast cells to the germ-tube and the interaction between C. albicans and epithelial cells. In order to ascertain that the action of suramin on C. albicans growth is a general feature instead of being strain-specific, the effects of suramin on 14 oral clinical strains isolated from healthy children and HIV-positive infants were analyzed. Interestingly, the strains of C. albicans isolated from HIV-positive patients were more resistant to suramin than strains isolated from healthy patients. Altogether, the results produced here show that suramin interfered with essential fungal processes, such as growth, differentiation and interaction with host cells.  相似文献   

13.
Suramin is an experimental antineoplastic agent that is currently being tested in clinical trials for a number of human cancers. In previous clinical trials, it has been noted that a significant percentage of patients treated with suramin develop a peripheral neuropathy. Both the cytotoxic (chemotherapeutic) and neurotoxic mechanisms of action of this compound are unknown. Evidence presented in this study suggests that both effects may be due to extensive disruption in glycolipid transport and/or metabolism. Suramin treated dorsal root ganglion cultures revealed an accumulation of the GM1 ganglioside and ceramide. Exposure of cultures to suramin, a cell permeable ceramide analog, or sphingomyelinase lead to apoptotic cell death demonstrated by electron microscopy, bis-benzimide staining and DNA laddering on gel electrophoresis. Furthermore, a significant increase in intracellular ceramide preceded cell death in suramin treated neurons. We propose that suramin induced ceramide accumulation within neurons leads to apoptotic cell death.  相似文献   

14.
Suramin is a competitive inhibitor of heparin binding to many proteins, including viral envelope proteins, protein tyrosine phosphatases, and fibroblast growth factors (FGFs). It has been clinically evaluated as a potential therapeutic in treatment of cancers caused by unregulated angiogenesis, triggered by FGFs. Although it has shown clinical promise in treatment of several cancers, suramin has many undesirable side effects. There is currently no experimental structure that reveals the molecular interactions responsible for suramin inhibition of heparin binding, which could be of potential use in structure-assisted design of improved analogues of suramin. We report the structure of suramin, in complex with the heparin-binding site of vaccinia virus complement control protein (VCP), which interacts with heparin in a geometrically similar manner to many FGFs. The larger than anticipated flexibility of suramin manifested in this structure, and other details of VCP-suramin interactions, might provide useful structural information for interpreting interactions of suramin with many proteins.  相似文献   

15.
16.
AIM: Suramin is a symmetrical polysulfonated naphthylamine derivative of urea. There have been few studies on the effect of suramin on cytokines. We examined the effects of suramin on production of inflammatory cytokines. METHODS: We made an acute liver injury model treated with d-galactosamine (GalN) and lipopolysaccharide (LPS). Plasma AST, ALT, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-6 levels were measured. We compared with survival rate, histological found and NF-kappaB activity between with and without treatment of suramin. In macrophage like cell line, TNF-alpha and IL-6 production, TNF-alpha and IL-6 mRNA expression, and NF-kappaB activity was measured. RESULTS: The lethality of mice administered suramin with GalN/LPS was significantly decreased compared with that in mice without suramin. Changes of hepatic necrosis and apoptosis were slight in suramin-treated mice. Serum AST, ALT, TNF-alpha, IL-6 levels and NF-kappaB activity in the liver were significantly lower in mice administered suramin. In an in vitro model, suramin preincubation inhibited TNF-alpha and IL-6 production, TNF-alpha and IL-6 mRNA expression, and NF-kappaB activity. CONCLUSIONS: Suramin inhibits TNF-alpha and IL-6 production through the suppression of NF-kappaB activity from macrophages and shows therapeutic effects on acute liver damage.  相似文献   

17.
The neural retina is a highly organized organ whose final histoarchitecture depends on the presence of diverse growth factors and on their interactions with extracellular matrix components. However, the role of growth factors on retinal development is not fully understood. Suramin has been shown to produce diverse cellular effects via the simultaneous block of the action of several growth factors. We have therefore studied the effects of suramin on organotypic culture of chick embryo neural retina in order to gain further insights into the participation of growth factors in neural retinal development. Neural retina was incubated for 24 h with suramin at 50-200 microM and then processed to determine cell proliferation, nuclear morphology, and actin distribution. Suramin provoked extensive morphological changes revealed by a decrease in BrdU incorporation, alterations in cellular organization, and disruption of the outer limiting membrane, with the emergence of cellular elements through it. All of these effects were dose-dependent and markedly attenuated by the simultaneous presence of suramin and fibroblast growth factor 2 (FGF-2) in the culture medium. These findings indicate that suramin induces pleiotropic effects on the histoarchitecture of the chicken neural retina in organ culture and suggest that FGF-2 is one of the biological modulators involved in the maintenance of the structural organization of the chicken neural retina.  相似文献   

18.

Background

Pulmonary hypertension (PH) is a progressive disorder characterized by an increase in pulmonary artery pressure and structural changes in the pulmonary vasculature. Several observations indicate that growth factors play a key role in PH by modulating pulmonary artery smooth muscle cell (PA-SMC) function. In rats, established monocrotaline-induced PH (MCT-PH) can be reversed by blocking platelet-derived growth factor receptors (PDGF-R), epidermal growth factor receptors (EGF-R), or fibroblast growth factor receptors (FGF-R). All these receptors belong to the receptor tyrosine kinase (RTK) family.

Methods and Results

We evaluated whether RTK blockade by the nonspecific growth factor inhibitor, suramin, reversed advanced MCT-PH in rats via its effects on growth-factor signaling pathways. We found that suramin inhibited RTK and ERK1/2 phosphorylation in cultured human PA-SMCs. Suramin inhibited PA-SMC proliferation induced by serum, PDGF, FGF2, or EGF in vitro and ex vivo. Treatment with suramin from day 1 to day 21 after monocrotaline injection attenuated PH development, as shown by lower values for pulmonary artery pressure, right ventricular hypertrophy, and distal vessel muscularization on day 21 compared to control rats. Treatment with suramin from day 21 to day 42 after monocrotaline injection reversed established PH, thereby normalizing the pulmonary artery pressure values and vessel structure. Suramin treatment suppressed PA-SMC proliferation and attenuated both the inflammatory response and the deposition of collagen.

Conclusions

RTK blockade by suramin can prevent MCT-PH and reverse established MCT-PH in rats. This study suggests that an anti-RTK strategy that targets multiple RTKs could be useful in the treatment of pulmonary hypertension.  相似文献   

19.
P2X(1) receptors belong to a family of cation channels gated by extracellular ATP; they are found inter alia in smooth muscle, platelets, and immune cells. Suramin has been widely used as an antagonist at P2X receptors, and its analog 4,4',4',4'-[carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino))] tetrakis-benzene-1,3-disulfonic acid (NF449) is selective for the P2X(1) subtype. Human and mouse P2X(1) receptors were expressed in human embryonic kidney cells, and membrane currents evoked by ATP were recorded. ATP (10 nm to 100 microm) was applied only once to each cell, to avoid the profound desensitization exhibited by P2X(1) receptors. Suramin (10 microm) and NF449 (3-300 nM) effectively blocked the human receptor. Suramin had little effect on the mouse receptor. Suramin and NF449 are polysulfonates, with six and eight negative charges, respectively. We hypothesized that species differences might result from differences in positive residues presented by the large receptor ectodomain. Four lysines in the human sequence (Lys(111), Lys(127), Lys(138), and Lys(148)) were changed individually and together to their counterparts in the mouse sequence. The substitution K138E, either alone or together with K111Q, K127Q, and K148N, reduced the sensitivity to block by both suramin and NF449. Conversely, when lysine was introduced into the mouse receptor, the sensitivity to block by suramin and NF449 was much increased for E138K, but not for Q111K, Q127K, or N148K. The results explain the marked species difference in antagonist sensitivity and identify an ectodomain lysine residue that plays a key role in the binding of both suramin and NF449 to P2X(1) receptors.  相似文献   

20.
Thrombin is a serine protease that plays fundamental roles in hemostasis. We have recently elucidated the crystal structure of thrombin in complex with suramin, evidencing the interaction through the anion binding exosite 2. Here, we show that the activity of thrombin toward natural and synthetic substrates is enhanced by suramin as well as analogs of suramin at a low micromolar range prior to an inhibitory component at higher concentrations. Suramin analogs substituted by phenyl and chlorine instead of methyl were the most efficient in promoting allosteric activation, with an enhancement of enzymatic activity of 250% and 630% respectively. We discuss the importance of exosite 2 as a regulatory site for ligands in both the procoagulant and inhibitory scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号