首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Underwater differential frequency hearing thresholds in the Black Sea bottle-nosed dolphin (Tursiops truncatus p.) and the northern fur seal (Callorhinus ursinus) were measured depending on signal frequency and sound conduction pathways. The measurements were performed by the method of instrumental conditioned reflexes with food reinforcement under conditions of full and partial (with heads out of water at sound conduction through body tissues) submergence of animals into water. It was shown that in a frequency range of 5-100 kHz, underwater differential frequency hearing thresholds of the bottle-nosed dolphin changed from 0.46-0.60% to 0.21-0.34% and depended little on sound conduction pathways. The minimum underwater differential frequency hearing thresholds of the northern fur seal corresponded to the frequencies of maximum hearing sensitivity, changed from 1.7% to 1-2.3% in a frequency range of 1-20 kHz, sharply increased at the edges of the frequency hearing perception range, and depended little (in a range of 5-40 kHz) on sound conduction pathways. Thus, underwater sounds propagating through the body tissues of dolphin and fur seal reach the inner ear.  相似文献   

2.
Babushina ES 《Biofizika》2000,45(5):927-934
Underwater audiograms of a northern fur seal, a Caspic seal and a dolphin aphalina were measured under conditions of full or partial (the head above the water) submergence of animals using the method of instrumental conditioned reflexes with food reinforcement. The possibility and peculiarities of sound conduction through the body of marine mammals were investigated by isolating the auricle from the medium of sound spreading (under conditions of partial submergence). By the same technique, the hearing thresholds of Caspic seal were measured in the presence of broad- and narrow-band noises with different central frequencies depending on the medium (underwater or in air) the signal and the noise masker were presented and on the sound-conducting ways (under conditions of full or partial submergence of animals). It was found that aerial and underwater sound-conducting canals of the Caspic seal were functionally connected with each other. The level of hearing masking in the Caspic seal is determined by the tracts of signal and noise conduction, by the differences in sensitivity to the signal and masker, and by their spectral structure. Apparently, the tissues of the seal body considerably change the amplitude-frequency characteristics of the sound.  相似文献   

3.
The peculiarities of underwater sound conduction through the body of the Black Sea bottlenose dolphin (Tursiops truncatus p.) were investigated to elucidate the mechanisms of acoustic orientation of marine mammals. By using the method of instrumental conditioned reflexes with food reinforcement, underwater hearing thresholds in the bottlenose dolphin depending on signal parameters (tonal pulses and various noises) and sound conduction pathways were measured under conditions of full and partial (with the head out of water and sound being conducted through the body tissues) submergence of the animal into water. The underwater hearing thresholds increased by 6-27 dB upon sound conduction through the body tissues (to the least extent for tonal pulses of 10 and 20 kHz). The hearing thresholds for tonal pulses and narrow-band noises were very similar both under conditions of full and partial submergence of the animal into water.  相似文献   

4.
This study examines discrete features in the northern fur seal Callorhinus ursinus related to the shape of the posterior edge of the front flipper, which is characterized by a varying degree of manifestation of quantitative (number of festoons) and qualitative (shape, size, and arrangement of lobes) features of each digit. Analysis of frequencies of the investigated morphological features in 12 northern fur seals showed their high chronological variability and the significance of between-sample differences both within the Tyuleniy Island population and between the different breeding groups. Thus, the usefulness of the above features as criteria for separating populations of northern fur seal appears to be doubtful.  相似文献   

5.
Despite the outstanding auditory capabilities of dolphins, there is only limited information available on the cytology of the auditory brain stem nuclei in these animals. Here, we investigated the cochlear nuclei (CN) of five brains of common dolphins (Delphinus delphis) and La Plata dolphins (Pontoporia blainvillei) using cell and fiber stain microslide series representing the three main anatomical planes. In general, the CN in dolphins comprise the same set of subnuclei as in other mammals. However, the volume ratio of the dorsal cochlear nucleus (DCN) in relation to the ventral cochlear nucleus (VCN) of dolphins represents a minimum among the mammals examined so far. Because, for example, in cats the DCN is necessary for reflexive orientation of the head and pinnae towards a sound source, the massive restrictions in head movability in dolphins and the absence of outer ears may be correlated with the reduction of the DCN. Moreover, the same set of main neuron types were found in the dolphin CN as in other mammals, including octopus and multipolar cells. Because the latter two types of neurons are thought to be involved in the recognition of complex sounds, including speech, we suggest that, in dolphins, they may be involved in the processing of their communication signals. Comparison of the toothed whale species studied here revealed that large spherical cells were present in the La Plata dolphin but absent in the common dolphin. These neurons are known to be engaged in the processing of low‐frequency sounds in terrestrial mammals. Accordingly, in the common dolphin, the absence of large spherical cells seems to be correlated with a shift of its auditory spectrum into the high‐frequency range above 20 kHz. The existence of large spherical cells in the VCN of the La Plata dolphin, however, is enigmatic asthis species uses frequencies around 130 kHz. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
The localization of a sum of acoustic signals by two northern fur seals in air depending on sound parameters was investigated using the method of instrumental conditioned reflexes with food reinforcement. It was found that sound perception of northern fur seal proceeds by the binaural mechanism. The time/intensity interchange coefficient was 570 microseconds/dB for series of clicks (with amplitude maximum at 1 kHz) and 250 microseconds/dB for tonal impulses with a frequency of 1 kHz. With click amplitudes being equal, the number of approaches of the animal to the source of the first signal reached a 75% level at a delay of the second signal 0.07 ms (the minimum delay); with a delay of 6 ms (the maximum delay) and more, the fur seal, probably hears two separate signals. The minimum delay depended little on the duration of tonal impulses (with a frequency of 1 kHz) and was 0.3-0.7 ms; the maximum delay was 9-11 ms for tonal impulses with a duration of 3 ms and 37-40 ms with impulse duration 20 ms. The precedence effect became apparent at a greater delay for smooth fronts of impulses than for rectangular fronts.  相似文献   

7.
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.  相似文献   

8.
The accuracy of localizing the underwater sound source in the vertical-plane by the bottlenose dolphin was investigated using the method of instrumental conditioned reflexes with food reinforcement. The accuracy of determining the underwater sound in the vertical plane (the full angle) was on the average: 2 - 2,5 degrees for tonal signals with frequencies of 5, 20, and 120 kHz; pulsed clicks with the central frequency of 120 kHz and the exponential forms of amplitude alteration wavefronts were localized by the dolphin with an accuracy of 1,5 degrees. Among all marine mammals examined, dolphins are characterized by the maximal exact analysis of acoustic space.  相似文献   

9.
Aerial and underwater audiograms for two young female northern fur seals ( Callorhinus ursinus ) and one young female California sea lion (Zalophus californianus) were obtained with the same procedure and apparatus. Callorhinus hears over a larger frequency range and is more sensitive to airborne sounds than Zalophus or any other pinniped thus far tested in the frequency range of 500 Hz to 32 kHz. Sensitivity of Callorhinus to waterborne pure tones, ranging from 2 to 28 kHz, is equal or superior to all other pinnipeds tested in this same frequency range. Like Zalophus , the upper frequency limit for underwater hearing (as defined by Masterton et al. 1969) in Callorhinus is about one-half octave lower than the three phocid species thus far tested. Callorhinus' upper frequency limit in air is about 36 kHz and under water it is about 40 kHz. Comparison of air and water audiograms shows Callorhinus is no exception to previous behavioral findings demonstrating that the „pinniped ear” is more suitable for hearing in water than in air. Similar to Zalophus and Phoca vitulina, Callorhinus shows an anomalous hearing loss at 4 kHz in air. The basis for this insensitivity to airborne sounds at 4kHz and not at lower or higher frequencies is presumably caused by specialized middle ear mechanisms matching impedance for waterborne sounds. Critical ratio curves for Callorhinus are similarly shaped to ones obtained for humans but are shifted upwards in frequency. Compared to all other marine mammals thus far evaluated, the critical ratios for Callorhinus are the smallest yet reported.  相似文献   

10.
Behavioral thermoregulation represents an important strategy for reducing energetic costs in thermally challenging environments, particularly among terrestrial vertebrates. Because of the cryptic lifestyle of aquatic species, the energetic benefits of such behaviors in marine endotherms have been much more difficult to demonstrate. In this study, I examined the importance of behavioral thermoregulation in the northern fur seal (Callorhinus ursinus) pup, a small-bodied endotherm that spends prolonged periods at sea. The thermal neutral zones of three weaned male northern fur seal pups (body mass range = 11.8-12.8 kg) were determined by measuring resting metabolic rate using open-flow respirometry at water temperatures ranging from 2.5° to 25.0°C. Metabolic rate averaged 10.03 ± 2.26 mL O?kg?1 min?1 for pups resting within their thermal neutral zone; lower critical temperature was 8.3° ± 2.5°C , approximately 8°C higher than the coldest sea surface temperatures encountered in northern Pacific waters. To determine whether behavioral strategies could mitigate this potential thermal limitation, I measured metabolic rate during grooming activities and the unique jughandling behavior of fur seals. Both sedentary grooming and active grooming resulted in significant increases in metabolic rate relative to rest (P = 0.001), and percent time spent grooming increased significantly at colder water temperatures (P < 0.001). Jughandling metabolic rate (12.71 ± 2.73 mL O?kg?1 min ?1) was significantly greater than resting rates at water temperatures within the thermal neutral zone (P < 0.05) but less than resting metabolism at colder water temperatures. These data indicate that behavioral strategies may help to mitigate thermal challenges faced by northern fur seal pups while resting at sea.  相似文献   

11.
A Quantitative Analysis of the Sounds of Hector's Dolphin   总被引:1,自引:0,他引:1  
We developed an automatic, computer-based system in which digital signal processing techniques were used to measure 31 variables from digitized Hector's dolphin (Cephalorhynchus hectori) sounds. Principal component analyses of these data were used to investigate the relationships between sounds. Hector's dolphins make only a very few types of pulsed “clicks”, most of which are centred around 125 kHz. None of these had an average frequency of less than 82 kHz, and the only audible sounds were made up of high-frequency clicks repeated at such high rates that the repetition rate was audible to us as a tonal “cry” or “squeal”. In comparison to signal levels recorded from other cetaceans, all the Hector's dolphin signals were low-level; the maximum received sound pressure level was 163 dB (re 1μPa).  相似文献   

12.
Summary Twelve sea lions (Zalophus californianus) and one harbor seal (Phoca vitulina) were examined by recording evoked potentials in response to sound from the inferior colliculus and adjacent structures, under barbiturate or after implanting and coming out of anesthesia. Results were similar in air and under water.The averaged response evoked by a sharply rising tone consists of early, brief peaks and later, slow waves (Fig. 1). The latency of the earliest deflection is 3.5 to 4.8 ms from the moment of arrival of a sound pip at the ear. The potential increases in size with sound intensity approximately as a power function, over a dynamic range of 60–70 db (Fig. 2). Masking is qualitatively similar to that in common laboratory species.The properties of the midbrain response are strikingly different from those in porpoises, reported elsewhere. The pinniped is not so specialized for extremely short duration, fast rise time, sounds or for rapid recovery or ultrasonic frequencies (Figs. 3, 4, 7, 8). Evoked potentials fail to show response above 30–35 kHz at 100 db SPL; best frequency is about 4–6 kHz (Figs. 5, 6). Threshold by this method is about 20 db SPL in air. Frequency modulated tones are markedly more effective in some loci but less so than in porpoises under water. The receptive field is essentially total and directionality weak, in contrast with porpoises.Physiological results cannot settle the question whether echolocation is employed but they can indicate lack of high specialization for the types of sounds bats and porpoises use.This study was aided by the Office of Naval Research, the Air Force Office of Scientific Research, the National Science Foundation, and the National Institute of Neurological Diseases and Stroke through grants to T. H. Bullock, and by the Naval Undersea Research and Development Center through S. H. Ridgway.The assistance of R. F. Green in developing anatomical landmarks and that of R. H. Hamstra, Jr. in electronic problems was especially valuable. The staffs of both laboratories were the essence of cooperation.  相似文献   

13.
Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover) as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20–30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.  相似文献   

14.
The goal of this study was to assess the maximum net productivity level for the northern fur seal ( Callorhinus ursinus ) population of St. Paul Island, Alaska. Definitive determination of this level is not possible due to uncertainty in life table parameters and density-dependent changes in those parameters. To account for such uncertainty, repetitive numerical simulations were used to generate frequency distributions of estimates for the maximum net productivity level and related population parameters. This approach systematically varied simulation input parameters, ran a separate simulation with each input parameter combination, and validated the simulations on the basis of comparison with historical observations. Results from validated simulations were compiled in frequency distributions to provide a measure of confidence for MNPL estimates. The distributions confirm that this population is probably well below its maximum net productivity level. Because they reflect the uncertainty in our understanding of northern fur seal population dynamics, these distributions are a more realistic basis for management than single point estimates.  相似文献   

15.
Sounds were produced by the topmouth minnow Pseudorasbora parva , a common Eurasian cyprinid, during feeding but not during intraspecific interactions. Feeding sounds were short broadband pulses with main energies between 100 and 800 Hz. They varied in their characteristics (number of single sounds per feeding sequence, sound duration and period, and sound pressure level) depending on the food type (chironomid larvae, Tubifex worms and flake food). The loudest sounds were emitted when food was taken up at the water surface, most probably reflecting 'suctorial' feeding. Auditory sensitivities were determined between 100 and 4000 Hz utilizing the auditory evoked potentials recording technique. Under laboratory conditions and in the presence of natural ambient noise recorded in Lake Neusiedl in eastern Austria, best hearing sensitivities were between 300 and 800 Hz (57 dB re 1 μPa v . 72 dB in the presence of ambient noise). Threshold-to-noise ratios were positively correlated to the sound frequency. The correlation between sound spectra and auditory thresholds revealed that P. parva can detect conspecific sounds up to 40 cm distance under ambient noise conditions. Thus, feeding sounds could serve as an auditory cue for the presence of food during foraging.  相似文献   

16.
The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions.Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements.Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images.This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance.  相似文献   

17.
We experimentally demonstrated that tonal acoustic signals with a carrier frequency of 140–200 Hz had a repellent effect on male mosquitoes (Culicidae). Swarming males of Aedes diantaeus were concentrated in a small space near the auxiliary attracting sound source which simulated the flight sound of conspecific females (carrier frequency 280–320 Hz). Then, the resulting cluster of attracted mosquitoes was stimulated with test signals of variable amplitude and carrier frequency from a second loudspeaker. The direction of mosquito flight from the source of test sounds and a decrease in their number above the attracting sound source were used as the criteria of behavioral response. Pronounced avoidance responses (negative phonotaxis) of swarming mosquitoes were observed in the range of 140–200 Hz. Most of the mosquitoes left the area above the attracting sound source within one second after the onset of the test signal. Mosquitoes mostly flew up, sideways, and backwards in relation to the test acoustic vector. We presume that mosquitoes develop defensive behavior against attacking predatory insects based on analysis of auditory information. The range of negative phonotaxis is limited at higher frequencies by the spectrum of the flight sounds of conspecific females, and in the low frequency range, by the increasing level of atmospheric noise.  相似文献   

18.
Pinniped phylogeny and a new hypothesis for their origin and dispersal   总被引:3,自引:0,他引:3  
The relationships and the zoogeography of the three extant pinniped families, Otariidae (sea lions and fur seals), Odobenidae (one extant species, the walrus), and Phocidae (true seals), have been contentious. Here, we address these topics in a molecular study that includes all extant species of true seals and sea lions, four fur seals and the walrus. Contrary to prevailing morphological views the analyses conclusively showed monophyletic Pinnipedia with a basal split between Otarioidea (Otariidae+Odobenidae) and Phocidae. The northern fur seal was the sister to all remaining otariids and neither sea lions nor arctocephaline fur seals were recognized as monophyletic entities. The basal Phocidae split between Monachinae (monk seals and southern true seals) and Phocinae (northern true seals) was strongly supported. The phylogeny of the Phocinae suggests that the ancestors of Cystophora (hooded seal) and the Phocini (e.g. harp seal, ringed seal) adapted to Arctic conditions and ice-breeding before 12 MYA (million years ago) as supported by the white natal coat of these lineages. The origin of the endemic Caspian and Baikal seals was dated well before the onset of major Pleistocene glaciations. The current findings, together with recent advances in pinniped paleontology, allow the proposal of a new hypothesis for pinniped origin and early dispersal. The hypothesis posits that pinnipeds originated on the North American continent with early otarioid and otariid divergences taking place in the northeast Pacific and those of the phocids in coastal areas of southeast N America for later dispersal to colder environments in the N Atlantic and the Arctic Basin, and in Antarctic waters.  相似文献   

19.
20.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号