首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

2.
The endogenous gibberellin (GA) content of spinach (Spinacia oleracea) was reinvestigated by combined gas chromatography-mass spectrometry analysis. The 13-hydroxy GAs: GA53, GA44, GA19, GA17, GA20, GA5, GA1, GA29, and GA8; the non-3, 13-hydroxy GAs: GA12, GA15, GA9, and GA51; and the 3β-hydroxy GAs: GA4, GA7, and GA34, were identified in spinach extracts by comparing full-scan mass spectra and Kovats retention indices with those of reference GAs. In addition, spinach plants contained GA7-isolactone, 16,17-dihydro-17-hydroxy-GA53, GA29-catabolite, 3-epi-GA1, and 10 uncharacterized GAs with mass spectra indicative of mono- and dihydroxy-GA12, monohydroxy-GA25, dihydroxy-GA24, and dihydroxy-GAg. The effect of light-dark conditions on the GA levels of the 13-hydroxylation pathway was studied by using labeled internal standards in selected ion monitoring mode. In short day, the GA levels were higher at the end of the light period than at the end of the dark period. Levels of GAs at the end of each short day were relatively constant. During the first supplementary light period of long day treatment, GA53 and GA19 declined dramatically, GA44 and GA1 decreased slightly, and GA20 increased. During the subsequent high-intensity light period, the GA20 level decreased and the levels of GA53, GA44, GA19, and GA1 increased slightly. Within 7 days after the beginning of long day treatment, similar patterns for GA53 and GA19 occurred. Furthermore, when these plants were transferred to darkness, an increase in the levels of GA53 and GA19 was observed. These results are compatible with the idea that in spinach, the flow through the GA biosynthetic pathway is much enhanced during the high-intensity light period, although GA turnover occurs also during the supplementary period of long day, both effects being responsible for the increase of GA20 and GA1 in long day.  相似文献   

3.
Partial purification of gibberellin oxidases from spinach leaves   总被引:3,自引:1,他引:2       下载免费PDF全文
Four enzyme activities catalyzing the following oxidative steps in the gibberellin (GA) biosynthetic pathway have been extracted from spinach (Spinacia oleracea L.) leaves after exposure to 8 long days: GA12 → GA53 → GA44 → GA19 → GA20. Two of these, GA53 oxidase and GA19 oxidase, were separable from the other two, GA44 oxidase and GA12 13-hydroxylase, by anion exchange high performance liquid chromatography (HPLC). Apparent molecular weights of the four enzymes as determined by gel filtration HPLC are: GA12 13-hydroxylase, 28,400; GA53 oxidase, 42,500; GA44 oxidase, 38,100; GA19 oxidase, 39,500. GA44 oxidase was purified approximately 100-fold in 0.3% yield by a combination of ammonium sulfate fractionation, anion exchange HPLC, phenyl-Sepharose chromatography and gel filtration HPLC.  相似文献   

4.
This communication describes the distribution of gibberellins (GAs) in roots and shoots of spinach in relation to photoperiod. From previous work (Metzger, Zeevaart 1980 Plant Physiol 65: 623-626) shoots were known to contain GA53, GA44, GA19, GA17, GA20, and GA29. We now show by combined gas chromatography—mass spectrometry that roots contain GA44, GA19, and GA29. Trace amounts of GA53 were detected by combined gas chromatography—selected ion current monitoring. Neither GA17 nor GA20 were detected in root extracts. Analysis by the d-5 corn bioassay also showed no effect of photoperiodic treatment on the levels of GA-like substances in root extracts. Both phloem and xylem exudates had patterns of GA-like activity similar to those found in shoots and roots, respectively. Moreover, foliar application of [3H]GA20 resulted in the transport of label from the shoot to the roots. Over half of the label in the roots represented unmetabolized [3H]GA20, indicating that part of the GA20 in the phloem is transported to the roots. Consequently, if GA20 is made in, or transported to the roots, it is rapidly metabolized in that organ. This is a clear indication that regulation of GA metabolism is greatly different in roots and shoots.  相似文献   

5.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

6.
《Phytochemistry》1987,26(9):2485-2488
Endogenous gibberellins (GAs) in Chinese Spring wheat seedlings were isolated by high performance liquid chromatography (HPLC) and identified by combined capillary gas chromatography-selected ion monitoring (GC-SIM). Gibberellins A1, A3, A19, A20, A44, and A53 were identified in the shoots, A19 and A20 in the roots. The identification of these 13-hydroxylated GAs demonstrates the presence of the early-13-hydroxylation pathway in wheat seedlings. Based on peak area of total ion response of five characteristic ions by GC-SIM, the approximate levels of GAs in the shoots is GA44 > GA19 > GA1 = GA3 > GA20 for the non-vernalized wheat seedlings, and GA44 > GA19 > GA53 = GA3 > GA1 = GA20 for the vernalized wheat seedlings. The C20 GAs, GA53, GA44 and GA19, are present in shoots of the vernalized (flowering) wheat seedlings at somewhat higher levels than that in the non-vernalized (rapidly growing) wheat seedlings. Approximate levels of the C19 GAs, GA20, GA1 and GA3 were lower in the shoots of the vernalized wheat seedlings than in the non-vernalized wheat seedlings. The conversion of GA19 to GA20 (C20 to C19 GAs) may be a rate-limiting step in the vernalized wheat seedlings.  相似文献   

7.
Eight gibberellins (GAs) were identified in extracts of buds of Aralia cordata by full scan GC/MS and by Kovats retention indices. These GAs comprised five GAs on the early-13-hydroxylation pathway [GA1, GA19, GA20, GA44, and GA53] and three other GAs [GA4, GA15, and GA37]. The major GAs were GA19 and GA44.  相似文献   

8.
The changes in the levels of five endogenous gibberellins (GAs) in spinach in relation to photoperiodic treatment have been examined by combined gas chromatography-selected ion current monitoring. Long-day treatment caused a 5-fold decline in the level of GA19 while the levels of GA20 and GA29 increased dramatically during the same period. In absolute terms, the level of GA20 increased from 0.8 microgram per 100 grams dry weight in short days to 5.5 micrograms per 100 grams dry weight after 14 long days. The levels of GA17 and GA44 did not change significantly with long-day treatment. These results are consistent with the hypothesis that GA19 is converted to GA20 and that this conversion is under photoperiodic control. Since stem growth in spinach is correlated with an increase in the level of GA20, one major aspect of photoperiodic control of stem growth might be the availability of GA20 through regulation of the conversion of GA19 to GA20.  相似文献   

9.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

10.
Effects of the Na and Le loci on gibberellin (GA) content and transport in pea (Pisum sativum L.) shoots were studied. GA1, GA8, GA17, GA19, GA20, GA29, GA44, GA8 catabolite, and GA29 catabolite were identified by full-scan gas chromatography-mass spectrometry in extracts of expanding and fully expanded tissues of line C79-338 (Na Le). Quantification of GAs by gas chromatography-single-ion monitoring using deuterated internal standards in lines differing at the Na and Le alleles showed that na reduced the contents of GA19, GA20, and GA29 on average to <3% and of GA1 and GA8 to <30% of those in corresponding Na lines. In expanding tissues from Na le lines, GA1 and GA8 concentrations were reduced to approximately 10 and 2%, respectively, and GA29 content increased 2- to 3-fold compared with those in Na Le plants. There was a close correlation between stem length and the concentrations of GA1 or GA8 in shoot apices in all six genotypes investigated. In na/Na grafts, internode length and GA1 concentration of nana scions were normalized, the GA20 content increased slightly, but GA19 levels were unaffected. Movement of labeled GAs applied to leaves on Na rootstocks indicated that GA19 was transported poorly to apices of na scions compared with GA20 and GA1. Our evidence suggests that GA20 is the major transported GA in peas.  相似文献   

11.
Gibberellins (GAs) A17, A19, A20, A29, A44, 2OH-GA44 (tentative) and GA29-catabolite were identified in 21-day-old seeds of Pisum sativum cv. Alaska (tall). These GAs are qualitatively similar to those in the dwarf cultivar Progress No. 9 with the exception of GA19 which does not accumulate in Progress seeds. There was no evidence for the presence of 3-hydroxylated GAs in 21 day-old Alaska seeds. Dark-grown shoots of the cultivar Alaska contein GA1, GA8, GA20, GA29, GA8-catabolite and GA29-catabolite. Dark-grown shoots of the cultivar Progress No.9 contain GA8, GA20, GA29 and GA29-catabolite, and the presence of GA1 was strongly indicated. Quantitation using GAs labelled with stable isotope showed the level of GA1 in dark-grown shoots of the two cultivars to be almost identical, whilst the levels of GA20, GA29 and GA29-catabolite were significantly lower in Alaska than in Progress No. 9. The levels of these GAs in dark-grown shoots were 102- to 103-fold less than the levels in developing seeds. The 2-epimer of GA29 is present in dark-grown-shoot extracts of both cultivars and is not thought to be an artefact.Abbreviations cv cultivar - GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatographymass spectrometry - HPLC high-pressure liquid chromatography - KRI Kovats retention index - MeTMSi methyl ester trimethylsilyl ether  相似文献   

12.
Nine gibberellins (GAs) have been identified from tissues of Valencia orange (Citrus sinensis Osbeck) using gas chromatography—mass spectrometry and gas chromatography-selected ion monitoring of high-performance liquid chromatography (HPLC)-fractionated extracts. These GAs are GA1, GA3, GA8, GA19, GA20, GA29, 3-epi-GA1, 2-epi-GA29, and iso-GA3. Selected-ion monitoring and stable-isotope dilution assays have been used to estimate levels of some of these GAs in vegetative and reproductive tissues. GA29 was found to be the most abundant GA measured. GA1 was found in all samples examined, and there was always less 3-epi-GA1 than GA1. GA20 was present in most extracts. Leaves of developing inflorescence shoots contained six times more GA29 than did leaves of comparable vegetative shoots. Levels of GA29 increased during the early stages of fruit development. GA20 may be more abundant in growing fruitlets than in those about to abscise; however, there were no consistent differences in the relative amounts of the other GAs. No major differences were found between tissues of immature seeded and seedless fruit, and developing seeds did not contain high levels of any of the GAs measured. It is concluded that seed-produced GAs are not essential for normal fruit development in Valencia orange.  相似文献   

13.
Metabolism of [14C]gibberellin (GA) A12 (GA12) and [14C]gibberellin A12-aldehyde (GA12-aldehyde) was examined in cotyledons and seed coats from developing seeds of pea (Pisum sativum L.). Both were metabolized to only 13-hydroxylated GAs in cotyledons but to 13-hydroxylated and non-13-hydroxylated GAs in seed coats. The metabolism of [14C]GA12 was slower in seed coats than in cotyledons. [14C]GA12-aldehyde was also metabolized to conjugates in seed coats. Seed coat [14C]-metabolites produced from [14C]GA12-aldehyde were isolated by high-performance liquid chromatography (HPLC). Conjugates were base hydrolyzed and the free GAs reisolated by HPLC and identified by gas chromatography-mass spectrometry. [14C]GA53-aldehyde, [14C]GA12-aldehyde conjugate, and [14C]GA53-aldehyde conjugate were major metabolites produced from [14C]GA12-aldehyde by seed coats aged 20-22 days or older. The dilution of 14C in these compounds by 12C, as compared to the supplied [14C]GA12-aldehyde, indicated that they are endogenous. Feeding [14C]GA53-aldehyde led to the production of [14C]GA53-aldehyde conjugate in seed coats and shoots and also to 13-hydroxylated GAs in shoots. Labeled GAs, recovered from plant tissue incubated with either [14C]GA12, [14C]GA12-aldehyde, or [3H]GA9, were used as appropriate markers for the recovery of endogenous GAs from seed coats or cotyledons. These GAs were purified by HPLC and identified and quantified by gas chromatography-mass spectrometry. GA15, GA24, GA9, GA51, GA51-catabolite, GA20, GA29, and GA29-catabolite were detected in seed coats, whereas GA9, GA53, GA44, GA19, GA20, and GA29 were found in cotyledons. The highest GA levels were for GA20 and GA29 in cotyledons (783 and 912 nanograms per gram fresh weight, respectively) and for GA29 and GA29-catabolite in seed coats (1940 and > 1940 nanograms per gram fresh weight, respectively).  相似文献   

14.
Gibberellins (GAs) A1, A5, and A29 were identified, and also GA32 was confirmed, as endogenous GAs of immature seeds (3-4 weeks after anthesis, 0.25-0.5 gram fresh weight) of apricot (Prunus armeniaca L.) based on capillary gas chromatography (GC), retention time (Rt), and selected ion monitoring (SIM), in comparison with authentic standards. Fractions subjected to GC-SIM were purified and separated using sequential solvent partitioning → paper chromatography → reverse phase C18 high performance liquid chromatography (HPLC) → bioassay on dwarf rice cv Tan-ginbozu. Two other peaks of free GA-like bioactivity (microdrop and immersion dwarf rice assays) were eluted from C18 HPLC at Rts where GA4/7 and GA8 (or other GAs with similar structures) would elute. Also, three unidentified GA glucoside-like compounds (based on bioactivity on the immersion assay, and no bioactivity on the microdrop assay) were noted. There were very high amounts of GA32 (112 ng of GA3 equivalents per gram fresh weight), and minor amounts (0.5 ng of GA3 equivalents) for each of GA1 and GA5, respectively, based on the microdrop assay.  相似文献   

15.
[17-13C,3H]-Labeled gibberellin A20 (GA20), GA5, and GA1 were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). 13C-Labeled GA29, GA8, GA5, GA1, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3-epi-G1, as well as unmetabolized [13C]GA1, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [13C]GA1, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA20, as follows: (a) GA20 → GA1 → GA8; (b) GA20 → GA5 → GA3; and (c) GA20 → GA29. The in vivo biogenesis of GA3 from GA5, as well as the origin of GA5 from GA20, are conclusively established for the first time in a higher plant (maize shoots).  相似文献   

16.
Tritium-labeled gibberellin A20 ([3H]GA20) was applied via the pedicel to immature pods and seeds of dwarf peas and three harvests were made at days 5, 10, and 23 (mature) after application. Of the five metabolites of [3H]GA20, the three in highest yield were GA29, an α,β-unsaturated ketone, and a compound (B), whose structure was only tentatively assigned. The metabolic sequence GA20 → GA29 → compound B → the ketone was indicated. The amount of [3H]GA29 in both seeds and pods was highest at day 5 and declined to its lowest level at maturity. The amount of the [3H]ketone in the seed increased with time to its highest level at maturity. It is suggested that compound B and the ketone represent the major pathway of catabolism of GA29, a 2β-hydroxylated GA of low biological activity, and that the ketone is not metabolized, or only slowly metabolized, during seed maturation.  相似文献   

17.
Talon M  Zeevaart JA 《Plant physiology》1990,92(4):1094-1100
Stem growth and flowering in the long-day plant Silene armeria L. are induced by exposure to a minimum of 3 to 6 long days (LD). Stem growth continues in subsequent short days (SD), albeit at a reduced rate. The growth retardant tetcyclacis inhibited stem elongation induced by LD, but had no effect on flowering. This indicates that photoperiodic control of stem growth in Silene is mediated by gibberellins (GA). The objective of this study was to analyze the effects of photoperiod on the levels and distribution of endogenous GAs in Silene and to determine the nature of the photoperiodic after-effect on stem growth in this plant. The GAs identified in extracts from Silene by full-scan combined gas chromatography-mass spectrometry (GC-MS), GA12, GA53, GA44, GA17, GA19, GA20, GA1, GA29, and GA8, are members of the early 13-hydroxylation pathway. All of these GAs were present in plants under SD as well as under LD conditions. The GA53 level was highest in plants in SD, and decreased in plants transferred to LD conditions. By contrast, GA19, GA20, and GA1 initially increased in plants transferred to LD, and then declined. Likewise, when Silene plants were returned from LD to SD, there was an increase in GA53, and a decrease in GA19, GA20, and GA1 which ultimately reached levels similar to those found in plants kept in SD. Thus, measurements of GA levels in whole shoots of Silene as well as in individual parts of the plant suggest that the photoperiod modulates GA metabolism mainly through the rate of conversion of GA53. As a result of LD induction, GA1 accumulates at its highest level in shoot tips which, in turn, results in stem elongation. In addition, LD also appear to increase the sensitivity of the tissue to GA, and this effect is presumably responsible for the photoperiodic after-effect on stem elongation in Silene.  相似文献   

18.
The biosynthetic steps from gibberellin A12-aldehyde (GA12-aldehyde) to C19-GAs were studied by means of a cell-free system from the embryos of immature Phaseolus vulgaris seeds. Stable-isotope-labeled GAs were used as substrates and the products were identified by gas chromatography-mass spectrometry. Gibberellin A12-aldehyde was converted to GA4 via non-hydroxylated intermediates and to GA1 via 13-hydroxylated intermediates. 13-Hydroxylation took place at the beginning of the pathway by the conversion of GA12-aldehyde to GA53-aldehyde. The conversion of GA20 to GA5 and GA6 was also shown but no 2-hydroxylating activity was found. Endogenous GAs from embryos and testas of 17-dold seeds were re-examined by gas chromatography-selected ion monitoring using stable-isotopelabeled GAs as internal standards. Gibberellins A9, A12, A15, A19, A23, A24, and A53 were identified for the first time in P. vulgaris, in addition to GA1, GA4, GA5, GA6, GA8, GA17, GA20, GA29, GA37, GA38 and GA44, which were previously known to occur in this species. The levels of all GAs, except the 2-hydroxylated ones, were greater in the embryos than in the testas. Conversely, the contents of GA8 and GA29, both 2-hydroxylated, were much higher in the testas than in the embryos.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - GC-SIM gas chromatography-selected ion monitoring - HPLC high-performance liquid chromatography - TLC thin-layer chromatography - m/z ion of mass  相似文献   

19.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

20.
The head smut fungus, Sporisorium reilianum ([Kuhn] Landon and Fullerton), was shown to reduce plant height in infected Sorghum bicolor ([L.] Moench) plants. The major reductions occurred in the internodes nearest the panicle and were more severe in naturally infected than in inoculated plants. Less affected plants developed reproductively sterile panicles, and eventually smutted panicles developed phyllodied growths which progressed into leafy shoots. Extracts of smutted, sterile, and healthy (control) panicles of field-grown plants exhibited gibberellin (GA)-like activity in the dwarf rice bioassay. When extracts were purified and assayed with deuterium-labeled GA standards by gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM), GA1, GA3, GA19, GA20, and GA53 were detected based on coelution with the standards, identical Kovats retention index values, and matching ion masses and relative abundances for three major ions. In addition, based on published Kovats retention index values, ion masses, and relative abundance values, GA4, GA7, GA8, GA14, GA29, and GA44 were tentatively identified. Quantitative analysis revealed that panicles of healthy control plants contained from 60 to 100% higher total concentrations of GAs than panicles of smutted plants. These comparisons were most striking for the early 13-hydroxylation pathway precursors GA53, GA44, and GA19 but not for GA20. Extracts of S. reilianum sporidia and culture medium exhibited GA-like bioactivity, and GA1 and GA3 were detected based on GC-MS-SIM assay with 2H-labeled internal standards. Quantitative analysis of these GAs showed increasing concentrations from 4 to 7 to 10 days of culture and a decline at 20 days. This is the first GC-MS-SIM detection of GAs in a non-Ascomycete fungus, and the disease symptoms and quantitative data suggested that fungal infection may interfere with biosynthesis of GAs by the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号