共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hollidge-Horvat MG Parolin ML Wong D Jones NL Heigenhauser GJ 《American journal of physiology. Endocrinology and metabolism》2000,278(2):E316-E329
The purpose of the study was to examine the roles of active pyruvate dehydrogenase (PDH(a)), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism during incremental exercise after ingestion of 0.3 g/kg of either NaHCO(3) [metabolic alkalosis (ALK)] or CaCO(3) [control (CON)]. Subjects (n = 8) were studied at rest, rest postingestion, and during constant rate cycling at three stages (15 min each): 30, 60, 75% of maximal O(2) uptake (VO(2 max)). Radial artery and femoral venous blood samples, leg blood flow, and biopsies of the vastus lateralis were obtained during each power output. ALK resulted in significantly (P < 0.05) higher intramuscular Lac(-) concentration ([Lac(-)]; ALK 72.8 vs. CON 65.2 mmol/kg dry wt), arterial whole blood [Lac(-)] (ALK 8.7 vs. CON 7.0 mmol/l), and leg Lac(-) efflux (ALK 10.0 vs. CON 4.2 mmol/min) at 75% VO(2 max). The increased intramuscular [Lac(-)] resulted from increased pyruvate production due to stimulation of glycogenolysis at the level of Phos a and phosphofructokinase due to allosteric regulation mediated by increased free ADP (ADP(f)), free AMP (AMP(f)), and free P(i) concentrations. PDH(a) increased with ALK at 60% VO(2 max) but was similar to CON at 75% VO(2 max). The increased PDH(a) may have resulted from alterations in the acetyl-CoA, ADP(f), pyruvate, NADH, and H(+) concentrations leading to a lower relative activity of PDH kinase, whereas the similar values at 75% VO(2 max) may have reflected maximal activation. The results demonstrate that imposed metabolic alkalosis in skeletal muscle results in acceleration of glycogenolysis at the level of Phos relative to maximal PDH activation, resulting in a mismatch between the rates of pyruvate production and oxidation resulting in an increase in Lac(-) production. 相似文献
3.
R C Cuneo F Salomon C M Wiles J M Round D Jones R Hesp P H S?nksen 《Hormone research》1992,37(1-2):23-28
The histology of needle biopsy specimens of skeletal muscle from the vastus lateralis was quantitatively assessed in a group of adults with growth hormone (GH) deficiency, most of whom had hypopituitarism treated with conventional pituitary hormone replacement. The mean age of the 21 patients (16 males and 5 females) was 39 +/- 2 (SEM). Comparisons were made with age- and sex-matched controls following six months double-blind, placebo-controlled treatment with recombinant human GH (rhGH) in the GH-deficient patients. Before treatment, needle muscle biopsies from patients with GH deficiency showed mean type I and II fibre areas of 5,153 +/- 273 and 4,828 +/- 312 microns 2 respectively, which did not differ from the controls (4,482 +/- 306 and 4,699 +/- 310 microns 2). Percentages of type I fibres were similar in the two groups (47.2 +/- 2.5% in GH deficiency and 45.3 +/- 2.2% in controls). No difference in the variability of type I or II fibre areas was demonstrated between the groups. Correlations between the relative contribution to total fibre area by type I fibres (mean fibre area x percent) and maximal oxygen uptake (p = 0.006), and between type II fibres and quadriceps force (p = 0.035) were noted in GH-deficient adults before treatment. Following rhGH treatment, no change was noted in mean fibre areas, variability of fibre areas, or percentage of either fibre type.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
5.
David W Russ Krista Vandenborne Glenn A Walter Mark Elliott Stuart A Binder-Macleod 《Journal of applied physiology》2002,92(5):1978-1986
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost. 相似文献
6.
7.
Binzoni T Delpy D 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2001,20(3):159-174
The aim of this review is to describe the effects induced by local temperature changes on human skeletal muscle metabolism. More specifically, we will consider the influence of temperature on the mechanical properties of muscle contraction, on aerobic metabolism, anaerobic metabolism and on the Lohmann reaction. The text has been voluntarily organized on the basis of a simple bioenergetic model describing the different energy fluxes appearing in the muscle system. This approach should better highlight some of the points that still need to be investigated. Although it was not always possible to restrict the discussion to human muscle, the references report mainly data obtained directly on humans or on isolated human fibres. A short comment on skeletal muscle temperature measurement techniques, on humans, is also included. 相似文献
8.
Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle 总被引:5,自引:0,他引:5
Krämer DK Al-Khalili L Guigas B Leng Y Garcia-Roves PM Krook A 《The Journal of biological chemistry》2007,282(27):19313-19320
The peroxisome proliferator-activated receptor (PPAR)delta has been implicated in the regulation of lipid metabolism in skeletal muscle. Furthermore, activation of PPARdelta has been proposed to improve insulin sensitivity and reduce glucose levels in animal models of type 2 diabetes. We recently demonstrated that the PPARdelta agonist GW501516 activates AMP-activated protein kinase (AMPK) and stimulates glucose uptake in skeletal muscle. However, the underlying mechanism remains to be clearly identified. In this study, we first confirmed that incubation of primary cultured human muscle cells with GW501516 induced AMPK phosphorylation and increased fatty acid transport and oxidation and glucose uptake. Using small interfering RNA, we have demonstrated that PPARdelta expression is required for the effect of GW501516 on the intracellular accumulation of fatty acids. Furthermore, we have shown that the subsequent increase in fatty acid oxidation induced by GW501516 is dependent on both PPARdelta and AMPK. Concomitant with these metabolic changes, we provide evidence that GW501516 increases the expression of key genes involved in lipid metabolism (FABP3, CPT1, and PDK4) by a PPARdelta-dependent mechanism. Finally, we have also demonstrated that the GW501516-mediated increase in glucose uptake requires AMPK but not PPARdelta. In conclusion, the PPARdelta agonist GW501516 promotes changes in lipid/glucose metabolism and gene expression in human skeletal muscle cells by PPARdelta- and AMPK-dependent and -independent mechanisms. 相似文献
9.
M.-T. Linossier D. Dormois P. Brégère A. Geyssant C. Denis 《European journal of applied physiology and occupational physiology》1997,76(1):48-54
The aim of this study was to examine whether the alkalosis-induced improvement in supramaximal performance could be explained
by a less-altered muscle metabolic status. Eight subjects first performed exhausting exercise at 120% peak oxygen uptake after
ingesting either a placebo (PLC) or sodium citrate (CIT) at a dose of 0.5 g · kg−1 body mass to determine exhaustion time (t
exh). They then, performed exercise (Lim-EX) at the same relative intensity lasting PLCt
exh minus 20 s in both treatments. Samples were taken from vastus lateralis muscle at rest (90-min after the ingestion) and at
the end of Lim-EX. Arterial blood samples were obtained at rest (immediately prior to and 90 min after ingesting the drug)
and during the 20-min post-exercise recovery. The t
exh was significantly increased by CIT [PLC 258 (SD 29) s, CIT 297 (SD 45) s]. The CIT raised the rest [citrate] in blood [PLC
0.11 (SD 0.01) mmol · l−1, CIT 0.34 (SD 0.07) mmol · l−1] and in muscle [PLC 0.78 (SD 0.23) mmol · kg−1 dry mass, CIT 1.00 (SD 0.21) mmol · kg−1 dry mass]. Resting muscle pH and buffering capacity were unchanged by CIT. The same fall in muscle pH was observed during
Lim-EX in the two conditions. This was associated with similar variations in both the cardio-respiratory response and muscle
energy and metabolism status in spite of a better blood acid-base status after CIT. Thus, CIT would not seem to allow the
alkalinization of the muscle cytosolic compartment. Though sodium citrate works in a similar way to NaHCO3 on plasma alkalinization and exercise performance, the exact nature of the mechanisms involved in the delay of exhaustion
could be different and remains to be elucidated.
Accepted: 26 November 1996 相似文献
10.
Adipose triglyceride lipase regulation of skeletal muscle lipid metabolism and insulin responsiveness 总被引:2,自引:0,他引:2
Watt MJ van Denderen BJ Castelli LA Bruce CR Hoy AJ Kraegen EW Macaulay L Kemp BE 《Molecular endocrinology (Baltimore, Md.)》2008,22(5):1200-1212
Adipose triglyceride lipase (ATGL) is important for triglyceride (TG) metabolism in adipose tissue, and ATGL-null mice show increased adiposity. Given the apparent importance of ATGL in TG metabolism and the association of lipid deposition with insulin resistance, we examined the role of ATGL in regulating skeletal muscle lipid metabolism and insulin-stimulated glucose disposal. ATGL expression in myotubes was reduced by small interfering RNA and increased with a retrovirus encoding GFP-HA-ATGL. ATGL was also overexpressed in rats by in vivo electrotransfer. ATGL was down-regulated in skeletal muscle of obese, insulin-resistant mice and negatively correlated with intramyocellular TG levels. ATGL small interfering RNA in myotubes reduced TG hydrolase activity and increased TG content, whereas ATGL overexpression induced the reciprocal response, indicating that ATGL is an essential TG lipase in skeletal muscle. ATGL overexpression in myotubes increased the oxidation of fatty acid liberated from TG and diglyceride and ceramide contents. These responses in cells were largely recapitulated in rats overexpressing ATGL. When ATGL protein expression and TG hydrolase activity in obese, insulin-resistant rats were restored to levels observed in lean rats, TG content was reduced; however, the insulin resistance induced by the high-fat diet persisted. In conclusion, ATGL TG hydrolysis in skeletal muscle is a critical determinant of lipid metabolism and storage. Although ATGL content and TG hydrolase activity are decreased in obese, insulin-resistant phenotypes, overexpression does not rescue the condition, indicating reduced ATGL is unlikely to be a primary cause of obesity-associated insulin resistance. 相似文献
11.
J K Barclay T E Graham B R Wolfe J Van Dijk B A Wilson 《Canadian journal of physiology and pharmacology》1990,68(7):870-876
Does the stimulatory effect of circulating catecholamines counteract the inhibitory effect of acidosis on skeletal muscle metabolism? To investigate this possibility, we studied gastrocnemii in dogs breathing either air (n = 10) or 4% carbon dioxide in air (n = 10) at rest and during contractions. In five dogs from each group, we infused propranolol into the arterial supply of the right and left muscles for 40 min. After 30 min of infusion, the left muscle was stimulated at 3 Hz for 10 min. During the 10th min of contractions, we removed and froze both muscles in liquid nitrogen. Oxygen uptake and blood flow to the left muscle prior to or during stimulation was not affected by acidosis either with or without propranolol. Glycogen concentration in resting muscle was unaffected by acidosis with or without propranolol. There was an acidosis related decrease of approximately 50% in the glycolytic intermediates (glucose 6-phosphate, fructose 1,6-diphosphate, alpha-glycerol phosphate, and dihydroxyacetone phosphate) in unstimulated muscles without beta-blockade. At rest, acidosis decreased muscle lactate by 50% with and 64% without propranolol, but lactate release was decreased only with acidosis without propranolol (1.4-0.1 mumols/kg.s). Acidosis without propranolol had no effect on the changes in glycogen concentration or the change in the concentration of glycolytic intermediates resulting from contractions. In beta-blocked muscle, the difference between stimulated and unstimulated concentrations of glycogen and glycolytic intermediates including lactate was 20-50% smaller with acidosis. Thus, with beta-blockade, the acidotic effects at rest disappeared and an inhibition of the metabolic adjustment to contractions appeared, indicating that circulating catecholamines do modify some metabolic effects of acidosis. 相似文献
12.
Jørgensen JO Jessen N Pedersen SB Vestergaard E Gormsen L Lund SA Billestrup N 《American journal of physiology. Endocrinology and metabolism》2006,291(5):E899-E905
Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n = 3) min after an intravenous bolus of GH (0.5 mg) vs. saline in conjunction with serum sampling in six healthy males after an overnight fast. Expression of the following signal proteins were assayed by Western blotting: STAT5/p-STAT5, MAPK, and Akt/PKB. IRS-1-associated PI 3-kinase activity was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5 was detected in muscle and fat of all subjects after GH. Activation of MAPK was observed in several lysates but without GH dependency. Neither PKB/Akt nor PI 3-kinase activity was affected by GH. GH-induced STAT5 DNA binding and expression of IGF-I mRNA were detected in fat, whereas expression of SOCS-1 and -3 tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human in vivo model may be used to study the mechanisms subserving the actions of GH on substrate metabolism and insulin sensitivity in muscle and fat. 相似文献
13.
14.
15.
V V Snitinski? 《Zhurnal evoliutsionno? biokhimii i fiziologii》1991,27(2):176-181
Studies have been made on the activity of hexokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase and isocitrate dehydrogenase, as well as on the intensity of in vitro oxidation of [U-14C]-glucose and [U-14C]-palmitate (together with in vivo lipid synthesis from these compounds) in porcine skeletal muscles during pre- and postnatal periods of life. It was shown that active utilization of glucose in oxidative metabolism and lipid synthesis is possible during the transition from prenatal to neonatal period. The increase in the rate of oxidation of fatty acids in skeletal muscles of piglets, in contrast to other animals, does not inhibit carbohydrate utilization. 相似文献
16.
C. Di Giacomo F. Latteri C. Fichera V. Sorrenti A. Campisi C. Castorina A. Russo R. Pinturo Dr. A. Vanella 《Neurochemical research》1993,18(11):1157-1162
It has been reported that acetyl-l-carnitine (AcCn) can reduce the degenerative processes in the central nervous system of rats, modify the fluidity of membranes and decrease the accumulation of lipofuscins in neurones. In light of these considerations we have assayed the in vitro effect of acetyl-l-carnitine on spontaneous and induced lipoperoxidation in rat skeletal muscle; in addition, the effect of AcCn on XD/XO ratio was evaluated. The presence of AcCn (10–40 mM) in incubation medium significantly reduced MDA and conjugated diene formation in rat skeletal muscle; moreover, a significant decrease in induced MDA levels was observed when microsomal preparation where incubated in the presence of 10–40 mM AcCn. Since a significant reduction of XO activity was detected in the presence of 10–80 mM AcCn, the reduced lipid peroxidation by AcCn seems to be due to an inhibition of XO activity. 相似文献
17.
Aerobic metabolic flux depends on the diffusion of high-energy phosphate molecules (e.g., ATP and phosphocreatine) from the mitochondria to cellular ATPases, as well as the diffusion of other molecules (e.g., ADP, Pi) back to the mitochondria. Here, we develop an approach for evaluating the influence of intracellular metabolite diffusion on skeletal muscle aerobic metabolism through the application of the effectiveness factor (η). This parameter provides an intuitive and informative means of quantifying the extent to which diffusion limits metabolic flux. We start with the classical approach assuming an infinite supply of substrate at the fiber boundary, and we expand this model to ultimately include nonlinear boundary and homogeneous reactions. Comparison of the model with experimental data from a wide range of skeletal muscle types reveals that most muscle fibers are not substantially limited by diffusion (η close to unity), but many are on the brink of rather substantial diffusion limitation. This implies that intracellular metabolite diffusion does not dramatically limit aerobic metabolic flux in most fibers, but it likely plays a role in limiting the evolution of muscle fiber design and function. 相似文献
18.
M L Villanueva-Pe?acarrillo L Márquez N González M Díaz-Miguel I Valverde 《Hormones et métabolisme》2001,33(2):73-77
We have studied the effect of several doses of GLP-1, compared to that of insulin and glucagons, on lipogenesis, lipolysis and cAMP cellular content, in human adipocytes isolated from normal subjects. In human adipocytes, GLP-1 exerts a dual action, depending upon the dose, on lipid metabolism, being lipogenic at low concentrations of the peptide (ED50, 10(-12) M), and lipolytic only at doses 10-100 times higher (ED50, 10(-10) M); both effects are time- and GLP-1 concentration-dependent. The GLP-1 lipogenic effect is equal in magnitude to that of equimolar amounts of insulin; both hormones apparently act synergically, and their respective action is abolished by glucagon. The lipolytic effect of GLP-1 is comparable to that of glucagon, apparently additive to it, and the stimulated value induced by either one is neutralized by the presence of insulin. In the absence of IBMX, GLP-1, at 10(-13) and 10(-12) M, only lipogenic doses, does not modify the cellular content of cAMP, while from 10(-11) M to 10(-9) M, also lipolytic concentrations, it has an increasing effect; in the presence of IBMX, GLP-1 at already 10(-12) M increased the cellular cAMP content. In human adipocytes, GLP-1 shows glucagon- and also insulin-like effects on lipid metabolism, suggesting the possibility of GLP-1 activating two distinct receptors, one of them similar or equal to the pancreatic one, accounting cAMP as a second messenger only for the lipolytic action of the peptide. 相似文献
19.
Ectopic fat accumulation has been linked to lipotoxic events, including the development of insulin resistance in skeletal muscle. Indeed, intramyocellular lipid storage is strongly associated with the development of type 2 diabetes. Research during the last two decades has provided evidence for a role of lipid intermediates like diacylglycerol and ceramide in the induction of lipid-induced insulin resistance. However, recently novel data has been gathered that suggest that the relation between lipid intermediates and insulin resistance is less straightforward than has been previously suggested, and that there are several routes towards lipid-induced insulin resistance. For example, research in this field has shifted towards imbalances in lipid metabolism and lipid droplet dynamics. Next to imbalances in key lipogenic and lipolytic proteins, lipid droplet coat proteins appear to be essential for proper intramyocellular lipid storage, turnover and protection against lipid-induced insulin resistance.Here, we discuss the current knowledge on lipid-induced insulin resistance in skeletal muscle with a focus on the evidence from human studies. Furthermore, we discuss the available data that provides supporting mechanistic information. 相似文献
20.
Krusenstjerna-Hafstrøm T Madsen M Vendelbo MH Pedersen SB Christiansen JS Møller N Jessen N Jørgensen JO 《PloS one》2011,6(5):e19392