首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpha-dystroglycan (alpha-DG) has been identified as a major receptor for lymphocytic choriomeningitis virus (LCMV) and Lassa virus, two Old World arenaviruses. The situation with New World arenaviruses is less clear: previous studies demonstrated that Oliveros virus also exhibited high-affinity binding to alpha-DG but that Guanarito virus did not. To extend these initial studies, several additional Old and New World arenaviruses were screened for entry into mouse embryonic stem cells possessing or lacking alpha-DG. In addition, representative viruses were further analyzed for direct binding to alpha-DG by means of a virus overlay protein blot assay technique. These studies indicate that Old World arenaviruses use alpha-DG as a major receptor, whereas, of the New World arenaviruses, only clade C viruses (i.e., Oliveros and Latino viruses) use alpha-DG as a major receptor. New World clade A and B arenaviruses, which include the highly pathogenic Machupo, Guanarito, Junin, and Sabia viruses, appear to use a different receptor or coreceptor for binding. Previous studies with LCMV have suggested the need for a small aliphatic amino acid at LCMV GP1 glycoprotein amino acid position 260 to allow high-affinity binding to alpha-DG. As reported herein, this requirement appears to be broadly applicable to the arenaviruses as determined by more extensive analysis of alpha-DG receptor usage and GP1 sequences of Old and New World arenaviruses. In addition, GP1 amino acid position 259 also appears to be important, since all arenaviruses showing high-affinity alpha-DG binding possess a bulky aromatic amino acid (tyrosine or phenylalanine) at this position.  相似文献   

2.
Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial‐specific clathrin adaptor AP‐1B. Some native epithelia lack AP‐1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP‐1B‐deficient epithelia to relocate AP‐1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP‐1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP‐1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus‐end kinesin KIF16B and non‐centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a‐dependent TfR recycling pathway of non‐polarized cells. They define a transcytotic pathway important for the physiology of native AP‐1B‐deficient epithelia and report the first microtubule motor involved in transcytosis.  相似文献   

3.
alpha-Dystroglycan (alpha-DG) is an important cellular receptor for extracellular matrix (ECM) proteins as well as the Old World arenaviruses lymphocytic choriomeningitis virus (LCMV) and the human pathogenic Lassa fever virus (LFV). Specific O-glycosylation of alpha-DG is critical for its function as receptor for ECM proteins and arenaviruses. Here, we investigated the impact of arenavirus infection on alpha-DG expression. Infection with an immunosuppressive LCMV isolate caused a marked reduction in expression of functional alpha-DG without affecting biosynthesis of DG core protein or global cell surface glycoprotein expression. The effect was caused by the viral glycoprotein (GP), and it critically depended on alpha-DG binding affinity and GP maturation. An equivalent effect was observed with LFVGP. Viral GP was found to associate with a complex between DG and the glycosyltransferase LARGE in the Golgi. Overexpression of LARGE restored functional alpha-DG expression in infected cells. We provide evidence that virus-induced down-modulation of functional alpha-DG perturbs DG-mediated assembly of laminin at the cell surface, affecting normal cell-matrix interactions.  相似文献   

4.
alpha-Dystroglycan (DG) is an important cellular receptor for extracellular matrix (ECM) proteins and also serves as the receptor for Old World arenaviruses Lassa fever virus (LFV) and lymphocytic choriomeningitis virus (LCMV) and clade C New World arenaviruses. In the host cell, alpha-DG is subject to a remarkably complex pattern of O glycosylation that is crucial for its interactions with ECM proteins. Two of these unusual sugar modifications, protein O mannosylation and glycan modifications involving the putative glycosyltransferase LARGE, have recently been implicated in arenavirus binding. Considering the complexity of alpha-DG O glycosylation, our present study was aimed at the identification of the specific O-linked glycans on alpha-DG that are recognized by arenaviruses. As previously shown for LCMV, we found that protein O mannosylation of alpha-DG is crucial for the binding of arenaviruses of distinct phylogenetic origins, including LFV, Mobala virus, and clade C New World arenaviruses. In contrast to the highly conserved requirement for O mannosylation, more generic O glycans present on alpha-DG are dispensable for arenavirus binding. Despite the critical role of O-mannosyl glycans for arenavirus binding under normal conditions, the overexpression of LARGE in cells deficient in O mannosylation resulted in highly glycosylated alpha-DG that was functional as a receptor for arenaviruses. Thus, modifications by LARGE but not O-mannosyl glycans themselves are most likely the crucial structures recognized by arenaviruses. Together, the data demonstrate that arenaviruses recognize the same highly conserved O-glycan structures on alpha-DG involved in ECM protein binding, indicating a strikingly similar mechanism of receptor recognition by pathogen- and host-derived ligands.  相似文献   

5.
Arenaviruses are rodent-borne viruses, with five members of the family capable of causing severe hemorrhagic fevers if transmitted to humans. To date, two distinct cellular receptors have been identified that are used by different pathogenic viruses, α-dystroglycan by Lassa fever virus and transferrin receptor 1 (TfR1) by certain New World clade B viruses. Our previous studies have suggested that other, as-yet-unknown receptors are involved in arenavirus entry. In the present study, we examined the use of TfR1 by the glycoproteins (GPs) from a panel of New World clade B arenaviruses comprising three pathogenic and two nonpathogenic strains. Interestingly, we found that TfR1 was only used by the GPs from the pathogenic viruses, with entry of the nonpathogenic strains being TfR1 independent. The pathogenic GPs could also direct entry into cells by TfR1-independent pathways, albeit less efficiently. A comparison of the abilities of TfR1 orthologs from different species to support arenavirus entry found that the human and feline receptors were able to enhance entry of the pathogenic strains, but that neither the murine or canine forms were functional. Since the ability to use TfR1 is a characteristic feature of the human pathogens, this interaction may represent an important target in the treatment of New World hemorrhagic fevers. In addition, the ability to use TfR1 may be a useful tool to predict the likelihood that any existing or newly discovered viruses in this family could infect humans.  相似文献   

6.
As we have shown previously, release of measles virus (MV) from polarized epithelial cells is not determined by the viral envelope proteins H and F. Although virus budding is restricted to the apical surfaces, both proteins were abundantly expressed on the basolateral surface of Madin-Darby canine kidney cells. In this report, we provide evidence that the basolateral expression of the viral proteins is of biological importance for the MV infection of polarized epithelial cells. We demonstrate that both MV glycoproteins possess a basolateral targeting signal that is dependent upon the unique tyrosine in the cytoplasmic tails. These tyrosines are shown to be also part of an endocytosis signal. In MV-infected cells, internalization of the glycoproteins was not observed, indicating that recognition of the endocytosis signals is disturbed by viral factors. In contrast, basolateral transport was not substantially hindered, resulting in efficient cell-to-cell fusion of polarized Madin-Darby canine kidney cells. Thus, recognition of the signals for endocytosis and polarized transport is differently regulated in infected cells. Mutation of the basolateral sorting signal in one of the MV glycoproteins prevented fusion of polarized cells. These results suggest that basolateral expression of the MV glycoproteins favors virus spread in epithelia.  相似文献   

7.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

8.
Gene transfer to differentiated airway epithelia with existing viral vectors is very inefficient when they are applied to the apical surface. This largely reflects the polarized distribution of receptors on the basolateral surface. To identify new receptor-ligand interactions that might be used to redirect vectors to the apical surface, we investigated the process of infection of airway epithelial cells by human coronavirus 229E (HCoV-229E), a common cause of respiratory tract infections. Using immunohistochemistry, we found the receptor for HCoV-229E (CD13 or aminopeptidase N) localized mainly to the apical surface of airway epithelia. When HCoV-229E was applied to the apical or basolateral surface of well-differentiated primary cultures of human airway epithelia, infection primarily occurred from the apical side. Similar results were noted when the virus was applied to cultured human tracheal explants. Newly synthesized virions were released mainly to the apical side. Thus, HCoV-229E preferentially infects human airway epithelia from the apical surface. The spike glycoprotein that mediates HCoV-229E binding and fusion to CD13 is a candidate for pseudotyping retroviral envelopes or modifying other viral vectors.  相似文献   

9.
Alpha-dystroglycan (alpha-DG) was identified as a common receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses including the human pathogenic Lassa fever virus. Initial work postulated that interactions between arenavirus glycoproteins and alpha-DG are based on protein-protein interactions. We found, however, that susceptibility toward LCMV infection differed in various cell lines despite them expressing comparable levels of DG, suggesting that posttranslational modifications of alpha-DG would be involved in viral receptor function. Here, we demonstrate that glycosylation of alpha-DG, and in particular, O mannosylation, which is a rare type of O-linked glycosylation in mammals, is essential for LCMV receptor function. Cells that are defective in components of the O-mannosylation pathway showed strikingly reduced LCMV infectibility. As defective O mannosylation is associated with severe clinical symptoms in mammals such as congenital muscular dystrophies, it is likely that LCMV and potentially other arenaviruses may have selected this conserved and crucial posttranslational modification as the primary target structure for cell entry and infection.  相似文献   

10.
The uptake of simian virus 40 (SV40) by polarized epithelial cells was investigated by growth of cells on permeable supports and inoculation on either the apical or the basolateral surface. Binding of radiolabeled SV40 occurred on the apical but not the basolateral surfaces of permissive polarized Vero C1008 cells and nonpermissive polarized MDCK cells. When similar experiments were performed on nonpolarized Vero or CV-1 cells, virus binding occurred regardless of the direction of virus input. Electron micrographs of Vero C1008 cells infected at high multiplicities revealed virions lining the surfaces of apically infected cells, while the surfaces of basolaterally infected cells were devoid of virus particles. Analysis of the binding data revealed a single class of virus receptors (9 x 10(4) per cell) with a high affinity for SV40 (Kd = 3.76 pM) on the apical surfaces of Vero C 1008 cells. Indirect immunofluorescence studies revealed that synthesis of viral capsid proteins in Vero C1008 cells occurred only when input virions had access to the apical surface. Virus yields from apically infected Vero C1008 cells were 10(5) PFU per cell, while yields obtained from basolaterally infected cells were less than one PFU per cell. These results indicate that a specific receptor for SV40 is expressed exclusively on the apical surfaces of polarized Vero C1008 cells.  相似文献   

11.
The cellular receptor for the Old World arenaviruses Lassa fever virus (LFV) and lymphocytic choriomeningitis virus (LCMV) has recently been identified as alpha-dystroglycan (alpha-DG), a cell surface receptor that provides a molecular link between the extracellular matrix and the actin-based cytoskeleton. In the present study, we show that LFV binds to alpha-DG with high affinity in the low-nanomolar range. Recombinant vesicular stomatitis virus pseudotyped with LFV glycoprotein (GP) adopted the receptor binding characteristics of LFV and depended on alpha-DG for infection of cells. Mapping of the binding site of LFV on alpha-DG revealed that LFV binding required the same domains of alpha-DG that are involved in the binding of LCMV. Further, LFV was found to efficiently compete with laminin alpha1 and alpha2 chains for alpha-DG binding. Together with our previous studies on receptor binding of the prototypic immunosuppressive LCMV isolate LCMV clone 13, these findings indicate a high degree of conservation in the receptor binding characteristics between the highly human-pathogenic LFV and murine-immunosuppressive LCMV isolates.  相似文献   

12.
Recent identification of two receptors for the adenovirus fiber protein, coxsackie B and adenovirus type 2 and 5 receptor (CAR), and the major histocompatibility complex (MHC) Class I alpha-2 domain allows the molecular basis of adenoviral infection to be investigated. Earlier work has shown that human airway epithelia are resistant to infection by adenovirus. Therefore, we examined the expression and localization of CAR and MHC Class I in an in vitro model of well differentiated, ciliated human airway epithelia. We found that airway epithelia express CAR and MHC Class I. However, neither receptor was present in the apical membrane; instead, both were polarized to the basolateral membrane. These findings explain the relative resistance to adenovirus infection from the apical surface. In contrast, when the virus was applied to the basolateral surface, gene transfer was much more efficient because of an interaction of adenovirus fiber with its receptors. In addition, when the integrity of the tight junctions was transiently disrupted, apically applied adenovirus gained access to the basolateral surface and enhanced gene transfer. These data suggest that the receptors required for efficient infection are not available on the apical surface, and interventions that allow access to the basolateral space where fiber receptors are located increase gene transfer efficiency.  相似文献   

13.
Machupo virus (MACV) is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1). TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors.  相似文献   

14.
Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.  相似文献   

15.
alpha-Dystroglycan (alpha-DG) was recently identified as a receptor for lymphocytic choriomeningitis virus (LCMV) and several other arenaviruses, including Lassa fever virus (W. Cao, M. D. Henry, P. Borrow, H. Yamada, J. H. Elder, E. V. Ravkov, S. T. Nichol, R. W. Compans, K. P. Campbell, and M. B. A. Oldstone, Science 282:2079-2081, 1998). Data presented in this paper indicate that the affinity of binding of LCMV to alpha-DG determines viral tropism and the outcome of infection in mice. To characterize this relationship, we evaluated the interaction between alpha-DG and several LCMV strains, variants, and reassortants. These viruses could be divided into two groups with respect to affinity of binding to alpha-DG, dependence on this protein for cell entry, viral tropism, and disease course. Viruses that exhibited high-affinity binding to alpha-DG displayed a marked dependence on alpha-DG for cell entry and were blocked from infecting mouse 3T6 fibroblasts by 1 to 4 nM soluble alpha-DG. In addition, high-affinity binding to alpha-DG correlated with an ability to infiltrate the white pulp (T-dependent) area of the spleen, cause ablation of the cytotoxic T-lymphocyte (CTL) response by day 7 postinfection, and establish a persistent infection. In contrast, viruses with a lower affinity of binding to alpha-DG were only partially inhibited from infecting alpha-DG(-/-) embryonic stem cells and required a concentration of soluble alpha-DG higher than 100 nM to prevent infection of mouse 3T6 fibroblasts. These viruses that bound at low affinity were mainly restricted to the splenic red pulp, and the host generated an effective CTL response that rapidly cleared the infection. Reassortants of viruses that bound to alpha-DG at high and low affinities were used to map genes responsible for the differences described to the S RNA, containing the virus attachment protein glycoprotein 1.  相似文献   

16.
At least five New World arenaviruses cause severe human hemorrhagic fevers. These viruses are transmitted to humans through contact with their respective South American rodent hosts. Each uses human transferrin receptor 1 (TfR1) as its obligate receptor. Accidental similarities between human TfR1 and TfR1 orthologs of arenaviral host species enable zoonoses, whereas mice and rats are not infectable because they lack these TfR1 determinants of infection. All pathogenic New World arenaviruses bind to a common region of the apical domain of TfR1. The ability of a New World arenavirus to use human TfR1 is absolutely predictive of its ability to cause hemorrhagic fevers in humans. Nonpathogenic arenaviruses, closely related to hemorrhagic fever arenaviruses, cannot utilize human TfR1 but efficiently enter cells through TfR1 orthologs of their native rodent hosts. Mutagenesis studies suggest that minor changes in the entry glycoproteins of these nonpathogenic viruses may allow human transmission. TfR1 is upregulated as a result of iron sequestration during the acute-phase response to infection, and the severity of disease may result from amplification of viral replication during this response.  相似文献   

17.
HFE, the protein that is mutated in hereditary haemochromatosis, binds to the transferrin receptor (TfR). Here we show that wild-type HFE and TfR localize in endosomes and at the basolateral membrane of a polarized duodenal epithelial cell line, whereas the primary haemochromatosis HFE mutant, and another mutant with impaired TfR-binding ability accumulate in the ER/Golgi and at the basolateral membrane, respectively. Levels of the iron-storage protein ferritin are greatly reduced and those of TfR are slightly increased in cells expressing wild-type HFE, but not in cells expressing either mutant. Addition of an endosomal-targeting sequence derived from the human low-density lipoprotein receptor (LDLR) to the TfR-binding-impaired mutant restores its endosomal localization but not ferritin reduction or TfR elevation. Thus, binding to TfR is required for transport of HFE to endosomes and regulation of intracellular iron homeostasis, but not for basolateral surface expression of HFE.  相似文献   

18.
Measles virus (MV) is typically spread by aerosol droplets and enters via the respiratory tract. The progression of MV infection has been widely studied; yet, the pathway for virus entry in polarized human airway epithelia has not been investigated. Herein we report the use of a replication-competent Edmonston vaccine strain of MV expressing enhanced green fluorescent protein (MV-eGFP) to infect primary cultures of well-differentiated human airway epithelia. Previous studies with polarized Caco-2 cells (intestine-derived human epithelia) and MDCK cells (kidney-derived canine epithelia) demonstrated that MV primarily infected and exited the apical surface. In striking contrast, our results indicate that MV preferentially transduces human airway cells from the basolateral surface; however, virus release remains in an apical direction. When MV-eGFP was applied apically or basolaterally to primary cultures of airway epithelia, discrete foci of eGFP expression appeared and grew; however, the cell layer integrity was maintained for the duration of the study (7 days). Interestingly, utilizing immunohistochemistry and confocal microscopy, we observed widespread expression of the receptor for the vaccine strain of MV (CD46) at greatest abundance on the apical surface of the differentiated human airway epithelia as well as in human tracheal tissue sections. These data suggest that the progression of MV infection through the respiratory epithelium may involve pathways other than direct binding and entry through the apical surface of airway epithelia.  相似文献   

19.
Variola virus, the causative agent of smallpox, enters and exits the host via the respiratory route. To better understand the pathogenesis of poxvirus infection and its interaction with respiratory epithelia, we used vaccinia virus and examined its interaction with primary cultures of well-differentiated human airway epithelia. We found that vaccinia virus preferentially infected the epithelia through the basolateral membrane and released viral progeny across the apical membrane. Despite infection and virus production, epithelia retained tight junctions, transepithelial electrical conductance, and a steep transepithelial concentration gradient of virus, indicating integrity of the epithelial barrier. In fact, during the first four days of infection, epithelial height and cell number increased. These morphological changes and maintenance of epithelial integrity required vaccinia virus growth factor, which was released basolaterally, where it activated epidermal growth factor 1 receptors. These data suggest a complex interaction between the virus and differentiated airway epithelia; the virus preferentially enters the cells basolaterally, exits apically, and maintains epithelial integrity by stimulating growth factor receptors.  相似文献   

20.
Contrary to most other epithelia, trophoblasts in the human placenta, which form the physical barrier between the fetal and the maternal blood circulation, express high numbers of transferrin receptors on their apical cell surface. This study describes the establishment of a polarized trophoblast-like cell line BeWo, which exhibit a high expression of transferrin receptors on the apex of the cells. Cultured on permeable filter supports, BeWo cells formed a polarized monolayer with microvilli on their apical cell surface. Across the monolayer a transepithelial resistance developed of approximately 600 omega.cm2 within 4 d. Depletion of Ca2+ from the medium decreased the resistance to background levels, showing its dependence on the integrity of tight junctions. Within the same period of time the secretion of proteins became polarized. In addition, the compositions of integral membrane proteins at the apical and basolateral plasma membrane domains were distinct as determined by domain-selective iodination. Similar to placental trophoblasts, binding of 125I-labeled transferrin to BeWo monolayers revealed that the transferrin receptor was expressed at both plasma membrane domains. Apical and basolateral transferrin receptors were found in a 1:2 surface ratio and exhibited identical dissociation constants and molecular weights. After uptake, transferrin recycled predominantly to the domain of administration, indicating separate recycling pathways from the apical and basolateral domain. This was confirmed by using diaminobenzidine cytochemistry, a technique by which colocalization of endocytosed 125I-labeled and HRP-conjugated transferrin can be monitored. No mixing of the two types of ligands was observed, when both ligands were simultaneously internalized for 10 or 60 min from opposite domains, demonstrating that BeWo cells possess separate populations of apical and basolateral early endosomes. In conclusion, the trophoblast-like BeWo cell line can serve as a unique model to compare the apical and basolateral endocytic pathways of a single ligand, transferrin, in polarized epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号