首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the lipid-depleted, oligomycin-sensitive mitochondrial ATPase has been measured in the presence of liposomes prepared from mixtures of phosphatidylglycerol and phosphatidylglycerol lysine. Enzyme activity increased linearly with an increase in the negative charge of liposomes prepared from the phosphatidylglycerol-phosphatidylglycerol lysine mixtures. The electrophoretic mobility and activating capacity of liposomes of several other phospholipids were determined. A linear relationship between electrophoretic mobility of the liposomes and oligomycin-sensitive activity was again apparent. These observations demonstrate that the activity of the ATPase is directly proportional to the ionic charge on phospholipid activators if the acyl chain composition of the phosphoglycerides is relatively constant.  相似文献   

2.
MutS protein initiates mismatch repair with recognition of a non-Watson-Crick base-pair or base insertion/deletion site in DNA, and its interactions with DNA are modulated by ATPase activity. Here, we present a kinetic analysis of these interactions, including the effects of ATP binding and hydrolysis, reported directly from the mismatch site by 2-aminopurine fluorescence. When free of nucleotides, the Thermus aquaticus MutS dimer binds a mismatch rapidly (k(ON)=3 x 10(6) M(-1) s(-1)) and forms a stable complex with a half-life of 10 s (k(OFF)=0.07 s(-1)). When one or both nucleotide-binding sites on the MutS*mismatch complex are occupied by ATP, the complex remains fairly stable, with a half-life of 5-7 s (k(OFF)=0.1-0.14 s(-1)), although MutS(ATP) becomes incapable of (re-)binding the mismatch. When one or both nucleotide-binding sites on the MutS dimer are occupied by ADP, the MutS*mismatch complex forms rapidly (k(ON)=7.3 x 10(6) M(-1) s(-1)) and also dissociates rapidly, with a half-life of 0.4 s (k(OFF)=1.7 s(-1)). Integration of these MutS DNA-binding kinetics with previously described ATPase kinetics reveals that: (a) in the absence of a mismatch, MutS in the ADP-bound form engages in highly dynamic interactions with DNA, perhaps probing base-pairs for errors; (b) in the presence of a mismatch, MutS stabilized in the ATP-bound form releases the mismatch slowly, perhaps allowing for onsite interactions with downstream repair proteins; (c) ATP-bound MutS then moves off the mismatch, perhaps as a mobile clamp facilitating repair reactions at distant sites on DNA, until ATP is hydrolyzed (or dissociates) and the protein turns over.  相似文献   

3.
The fluorescent probes, N-(3-pyrene)maleimide, which is specific for histone H3, and terbium (Tb3+), which is specific for guanine single-stranded residues in DNA, are used to investigate the interaction of platinum complexes (cis- and trans-dichlorodiammineplatinum(II)) with rat liver and calf thymus nucleosomes. At low concentrations of the drug, lower than most of those reported previously in studies investigating the interaction of the drugs with isolated DNA, N-(3-pyrene)maleimide studies show that profound modifications occur near or in the cysteinyl binding site of histone H3. H3 dimer formation appears to be the cause of the change induced by trans-DDP; however, the effects observed with the cis-isomer do not seem to be correlated with dimer formation. At short incubation times, Tb3+ fluorescence shows small changes in DNA conformation, but they are slight when compared to the effect observed with proteins at the same length of incubation. SDS-polyacrylamide gels indicate some changes in protein composition, and agarose gels display a decrease in ethidium bromide staining of the cis-treated DNA. The results suggest that the protein portion, predominantly histone H3, as well as DNA are targets for the platinum derivatives in the nucleosome.  相似文献   

4.
The influence of two mixing geometries (at the same scale) with different flow energy distributions on the performance of the gibberellic acid fermentation and on the morphology of the producing fungus Fusarium moniliforme was investigated. Fermentations were performed using a turbine mixing system (TMS) and a counterflow mixing system (CMS), which were high and low power number mixing systems, respectively. Different agitator speed rate profiles were maintained to obtain equal specific power inputs to both mixing systems. Substantial differences in morphology and productivity of F. moniliforme were found. To investigate the causes of these differences, local values and spectra of the kinetic energy of flow fluctuations were measured during the fermentations using a stirring intensity measuring device (SIMD) and a frequency spectrum analyzer. Biomass and gibberellic acid concentrations were found to be higher in the TMS, where the energy distribution was less even, and Vi/here the main part of the energy was at small frequencies (large eddies). An automated image analysis method was used for quantitative characterization of F. moniliforme freely dispersed mycelia and clump morphology. A higher proportion of clumped mycelia with clumps of larger area, perimeter, and roughness was observed in the TMS. A correlation between the morphology and productivity was found, and TMS favored the development of more productive mycelia with longer and thinner hyphae. Introduced power was not a good parameter to characterize different impellers, even at a given scale. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
ADP and ATP form in acidic aqueous solutions strong complexes with Mo(VI) oxocations in different stoichiometries. Complexation occurs predominantly, if not exclusively, through the phosphate groups of the nucleotides.  相似文献   

6.
ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex.  相似文献   

7.
Jeong E  Kim H  Lee SW  Han K 《Molecules and cells》2003,16(2):161-167
With the availability of many genome sequences, the mining of biological data is attracting much attention, most of it limited to the sequences of macromolecules. Sequence data are easy to analyze as they can be treated as strings of characters, whereas the structure of a macromolecule is much more complex. We developed a set of algorithms to analyze the structures of protein-RNA complexes at the atomic level and used them to analyze protein-RNA interactions using structural data on 51 protein-RNA complexes. The analysis revealed, among other things, that: (1) polar and charged amino acids have a strong tendency to interact with nucleotides, (2) arginine and asparagine tend to hydrogen bond with uracil, and (3) histidine favors uracil in water-mediated bonding with RNA. We analyzed a large set of structural data of protein-RNA complexes involving water-mediated hydrogen bonds as well as direct hydrogen bonds. The interaction patterns discovered from the analysis provide useful information for predicting the structure of RNA that binds proteins, and of proteins that bind RNA.  相似文献   

8.
The Escherichia coli MsbA protein is a 65-kDa member of the ATP-binding cassette superfamily. It is thought to function as an ATP-dependent lipid translocase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. MsbA with high ATPase activity was isolated and found to be homodimeric in detergent solution. The protein ATPase activity was inhibited by vanadate and showed variable patterns of stimulation and inhibition by lipid A and other compounds. The intrinsic tryptophan fluorescence of the protein was characterized, and dynamic quenching using acrylamide showed that a conformational change took place on binding of lipid A. Fluorescence quenching was used to characterize the interactions of MsbA with nucleotides and various putative substrates, including lipids, lipid-like compounds, and drugs. MsbA had an apparent binding affinity for ATP of approximately 2 mm and also bound nonhydrolyzable ATP analogs and fluorescent ATP derivatives. The putative substrate lipid A interacted with the protein with an affinity of 6.4 microm. Drugs that are known to be substrates for ABC multidrug transporters also interacted with MsbA with affinities in the range 0.25-50 microm. This study represents the first use of fluorescence approaches to estimate MsbA binding affinities for nucleotides and putative transport substrates.  相似文献   

9.
A series of multinuclear macrocyclic polyamine metal (Zn(2+), Cu(2+), Co(2+)) complexes containing chiral dipeptide linkage were synthesized and used as artificial nuclease enzyme model. The interaction between the complexes and plasmid DNA (pUC19) was studied, and the results revealed that these complexes could act as powerful catalysts for the cleavage of plasmid DNA under physiological conditions.  相似文献   

10.
11.
Summary To assay the functional significance of the multiple but closely related - and -tubulin polypeptides (termed isotypes) that are expressed in mammalian cells, we have generated a number of sera that uniquely discriminate among these isotypes. These sera have been used to demonstrate that there is no subcellular sorting of either - or -tubulin isotypes among microtubules of diverse function, either in cells growing in culture or in tissues consisting of cell types that contain specialized kinds of microtubule. In spite of this failure to segregate between functionally distinct kinds of microtubule, the fact that isotype-specific amino acid sequences have been strictly conserved over extensive periods of evolutionary time argues persuasively for a functional role for the different tubulin gene products. One possibility is that they are required for specific interactions with microtubule associated proteins (MAPs), and that tubulin isotypes have coevolved with different cell type-specific MAPs with which they must interact. We have tested this hypothesis by examining the distribution of -tubulin isotypes in mammalian cerebellum in relationship to the known patterns of expression of a number of MAPs, and find that these patterns correlate in the case of M 2 and MAP 3, and M 6 and MAP 1 a. These data, plus emerging data based on a structural analysis of tau, MAP 1 b and MAP 2 obtained via sequence determination of cloned cDNAs, are discussed in terms of the possible functional significance of tubulin isotype/MAP interactionsin vivo.  相似文献   

12.
Goder V  Carvalho P  Rapoport TA 《FEBS letters》2008,582(11):1575-1580
Misfolded proteins in the endoplasmic reticulum (ER) are often degraded in the cytosol by a process called ER-associated protein degradation (ERAD). During ERAD in S. cerevisiae, the ATPase Cdc48p associates with Der1p, a putative component of a retro-translocation channel. Cdc48p also binds a homolog of Der1p, Dfm1p, that has no known function in ERAD. Here, we show that Der1p and Dfm1p are contained in distinct complexes. While the complexes share several ERAD components, only the Dfm1p complex contains the Cdc48p cofactors Ubx1p and Ubx7p, while the Der1p complex is enriched in Ufd1p. These data suggest distinct functions for the Der1p and Dfm1p complexes.

Structured summary

MINT-6491003:

Ufd1-SA (uniprotkb:P53044) physically interacts (MI:0218) with Der1-HA (uniprotkb:P38307) by anti tag coimmunoprecipitation (MI:0007)

MINT-6490940:

Der1-SA (uniprotkb:P38307) physically interacts (MI:0218) with Cdc48 (uniprotkb:P25694), Usa1 (uniprotkb:Q03714), Hrd3 (uniprotkb:Q05787), Hrd1 (uniprotkb:Q08109), Ubx2 (uniprotkb:Q04228), Yos9 (uniprotkb:Q99220), Npl4 (uniprotkb:P33755) and Ufd1 (uniprotkb:P53044) by anti tag coimmunoprecipitation (MI:0007)

MINT-6490972:

Dfm1-CA (uniprotkb:Q12743) physically interacts (MI:0218) with Ubx7 (uniprotkb:P38349), Ubx1 (uniprotkb:P34223), Kar2 (uniprotkb:P16474), Npl4 (uniprotkb:P33755), Yos9 (uniprotkb:Q99220),Ubx2 (uniprotkb:Q04228), Hrd1 (uniprotkb:Q08109), Hrd3 (uniprotkb:Q05787), Usa1 (uniprotkb:Q03714) and Cdc48 (uniprotkb:P25694) by anti tag coimmunoprecipitation (MI:0007)

MINT-6491016:

Ufd1-SA (uniprotkb:P53044) physically interacts (MI:0218) with Dfm1-HA (uniprotkb:Q12743) by anti tag coimmunoprecipitation (MI:0007)

MINT-6491041:

Ubx7-SA (uniprotkb:P38349) physically interacts (MI:0218) with Dfm1-HA (uniprotkb:Q12743) by anti tag coimmunoprecipitation (MI:0007)

MINT-6490909:

Dfm1-CA (uniprotkb:Q12743) physically interacts (MI:0218) with Dfm1-HA (uniprotkb:Q12743) by anti tag coimmunoprecipitation (MI:0007)

MINT-6491029:

Ubx1-SA (uniprotkb:P34223) physically interacts (MI:0218) with Dfm1-HA (uniprotkb:Q12743) by anti tag coimmunoprecipitation (MI:0007)

MINT-6490896:

Der1-SA (uniprotkb:P38307) physically interacts (MI:0218) with Der1-HA (uniprotkb:P38307) by anti tag coimmunoprecipitation (MI:0007)

Keywords: ER-associated degradation; Ubx proteins; Cdc48p ATPase  相似文献   


13.
Adenosine deaminase (ADA) was isolated from small intestine of mice and purified to utmost homogeneity. SDS-PAGE of purified ADA gave a molecular weight of 41 kDa. Western blot analyses gave a single reactive band at 41 kDa and the other band was an associated ADA binding protein. The purified enzyme was more stable in the alkaline pH. The optimum pH and the pI values were about 7.0 and 4.96, respectively. Km values of the small intestinal ADA for adenosine and 2-deoxyadenosine were 23 and 16M, respectively. Purine riboside was a competitive inhibitor with Ki of 5 M, whereas 2-3-o-isopropylidene adenosine acted as an uncompetitive inhibitor (Ki 66 M). Activity of ADA was inhibited by the presence of theophylline (-40%), caffeine (-30%), and L-cysteine (-50%). Significantly, Hg2+ (100 M) inhibited 98% of the initial ADA activity. In addition, various purine analogs such as inosine, purine, -adenosine and adenine showed variable inhibitions on the activity of ADA. Relative ADA activity towards 3-deoxyadenosine and 6-chloropurine riboside was lower by 30% and 40%, respectively. However, the activity towards 2-o-methyl adenosine was higher (30%) compared to the activity obtained using adenosine.  相似文献   

14.
Joseph N  Sawarkar R  Rao DN 《DNA Repair》2004,3(12):265-1577
Haemophilus influenzae DNA mismatch repair proteins, MutS, MutL and MutH, are functionally characterized in this study. Introduction of mutS, mutL and mutH genes of H. influenzae resulted in complementation of the mismatch repair activity of the respective mutant strains of Escherichia coli to varying levels. DNA binding studies using H. influenzae MutH have shown that the protein is capable of binding to any DNA sequence non-specifically in a co-operative and metal independent manner. Presence of MutL and ATP in the binding reaction resulted in the formation of a more specific complex, which indicates that MutH is conferred specificity for binding hemi-methylated DNA through structural alterations mediated by its interaction with MutL. To study the role of conserved amino acids Ile213 and Leu214 in the helix at the C-terminus of MutH, they were mutated to alanine. The mutant proteins showed considerably reduced DNA binding and nicking, as well as MutL-mediated activation. MutH failed to nick HU bound DNA whereas MboI and Sau3AI, which have the same recognition sequence as MutH, efficiently cleaved the substrate. MutS ATPase activity was found to be reduced two-fold in presence of covalently closed circular duplex containing a mismatched base pair whereas, the activity was regained upon linearization of the circular duplex. This observation possibly suggests that the MutS clamps are trapped in the closed DNA heteroduplex. These studies, therefore, serve as the basis for a detailed investigation of the structure-function relationship among the protein partners of the mismatch repair pathway of H. influenzae.  相似文献   

15.
We have obtained equilibrium and rate constants for the interaction of monoclonal IgG and its monovalent Fab fragment with a hapten (fluorescein) attached to the surface of a liposome. Binding was detected at nanomolar hapten concentrations by the quenching of the hapten's fluorescence on antibody binding. The binding parameters were computed from nonlinear least squares fits, using mass-action models. Crypticity of the hapten was observed and interpreted as an equilibrium between two states, extended and sequestered, the latter representing haptens associated with the membrane surface. Depending on the lipid composition of the liposomes, the fraction of sequestered hapten ranged from 0.25 to 0.975; transitions between the two states took place on the time scale of minutes. Fab interactions with extended hapten on the membrane were similar to interactions with water-soluble hapten. The ability of IgG to bind bivalently to membrane gave it an avidity two to six times the affinity for purely monovalent binding. However, the equilibrium constant for the monovalent-bivalent binding equilibrium was effectively four to five orders of magnitude less than that for the initial binding step. This probably reflects steric penalties for the simultaneous binding of two haptens on a membrane.  相似文献   

16.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

17.
The activity of the lipid-depleted, oligomycin-sensitive mitochondrial ATPase has been measured in the presence of liposomes prepared from mixtures of phosphatidylglycerol and phosphatidylglycerol lysine. Enzyme activity increased linearly with an increase in the negative charge of liposomes prepared from the phosphatidylglycerol-phosphatidylglycerol lysine mixtures. The electrophoretic mobility and activating capacity of liposomes of several other phospholipids were determined. A linear relationship between electrophoretic mobility of the liposomes and oligomycin-sensitive activity was again apparent. These observations demonstrate that the activity of the ATPase is directly proportional to the ionic charge on phospholipid activators if the acyl chain composition of the phosphoglycerides is relatively constant.  相似文献   

18.
The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.  相似文献   

19.
Fluorescent chimeras composed of enhanced cyan (or enhanced yellow) fluorescent proteins (ECFP or EYFP) and one of the four human small heat shock proteins (HspB1, HspB5, HspB6 or HspB8) were expressed in E. coli and purified. Fluorescent chimeras were used for investigation of heterooligomeric complexes formed by different small heat shock proteins (sHsp) and for analysis of their subunit exchange. EYFP-HspB1 and ECFP-HspB6 form heterooligomeric complex with apparent molecular weight of ∼280 kDa containing equimolar quantities of both sHsp. EYFP-HspB5 and ECFP-HspB6 formed heterogeneous oligomeric complexes. Fluorescent proteins inside heterooligomeric complexes formed by HspB1/HspB6 and HspB5/HspB6 chimeras are closely located, making possible effective fluorescence resonance energy transfer (FRET). Neither the wild type HspB8 nor its fluorescent chimeras were able to form stable heterooligomeric complexes with the wild type HspB1 and HspB5. Homo- and hetero-FRET was used for analysis of subunit exchange of small heat shock proteins. The apparent rate constant of subunit exchange was temperature-dependent and was higher for HspB6 forming small oligomers than for HspB1 forming large oligomers. Replacement induced by homologous subunits was more rapid than the replacement induced by heterologous subunits of small heat shock proteins. Fusion of fluorescent proteins might affect oligomeric structure of small heat shock proteins, however fluorescent chimeras can be useful for investigation of heterooligomeric complexes formed by sHsp and for analysis of kinetics of their subunit exchange.  相似文献   

20.
The syntheses, characteristics of dinuclear macrocyclic polyamine zinc complexes and their interaction with plasmid DNA are reported. The two cyclen (1,4,7,10-tetraazacyclododecane) moieties are bridged by rigid and flexible linkages. The crystal structures of Zn2C27H43N8O15Cl4 [5c.(ClO4)3.2H2O] and Zn2C30H43N10O13Cl3 [5e.(ClO4)3.H2O] have been determined. The complexes crystallize in the monoclinic space group C2/c and P2(1)/c with the following unit cell parameters: 5c.(ClO4)3.2H2O: a=32.568(4)A, b=14.8593(17)A, c=19.443(2)A, alpha=90.00 degrees , beta=119.435(4) degrees , gamma=90.00 degrees , Dc=1.551 mg/m3, FW=956.71, F(000)=3932; 5e.(ClO4)3.H2O: a=15.807(2)A, b=16.756(2)A, c=16.161(2)A, alpha=90.00 degrees , beta=97.062(4) degrees , gamma=90.00 degrees , Dc=1.546 mg/m3, FW=988.83, F(000)=2032. The distance between the two Zn(II) ions is about 4.0 A. The structures show that two zinc ions can synergistically interact with the substrate DNA. With this novel structural characteristics, the dinuclear macrocyclic polyamine Zn(II) complexes via the synergetic effect between the two zinc ions can catalyze the cleavage of plasmid DNA (pUC18) with unprecedented speed at physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号