首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
simuPOP: a forward-time population genetics simulation environment   总被引:2,自引:0,他引:2  
  相似文献   

2.
The effect of non-random mating on genetic response was compared for populations with discrete generations. Mating followed a selection step where the average coancestry of selected animals was constrained, while genetic response was maximised. Minimum coancestry (MC), Minimum coancestry with a maximum of one offspring per mating pair (MC1) and Minimum variance of the relationships of offspring (MVRO) mating schemes resulted in a delay in inbreeding of about two generations compared with Random, Random factorial and Compensatory mating. In these breeding schemes where selection constrains the rate of inbreeding, ΔF, the improved family structure due to non-random mating increased genetic response. For schemes with ΔF constrained to 1.0% and 100 selection candidates, genetic response was 22% higher for the MC1 and MVRO schemes compared with Random mating schemes. For schemes with a less stringent constraint on ΔF or more selection candidates, the superiority of the MC1 and MVRO schemes was smaller (5–6%). In general, MC1 seemed to be the preferred mating method, since it almost always yielded the highest genetic response. MC1 mainly achieved these high genetic responses by avoiding extreme relationships among the offspring, i.e. fullsib offspring are avoided, and by making the contributions of ancestors to offspring more equal by mating least related animals.  相似文献   

3.
Interactions with parasites may promote the evolution of disassortative mating in host populations as a mechanism through which genetically diverse offspring can be produced. This possibility has been confirmed through simulation studies and suggested for some empirical systems in which disassortative mating by disease resistance genotype has been documented. The generality of this phenomenon is unclear, however, because existing theory has considered only a subset of possible genetic and mating scenarios. Here we present results from analytical models that consider a broader range of genetic and mating scenarios and allow the evolution of non-random mating in the parasite as well. Our results confirm results of previous simulation studies, demonstrating that coevolutionary interactions with parasites can indeed lead to the evolution of host disassortative mating. However, our results also show that the conditions under which this occurs are significantly more fickle than previously thought, requiring specific forms of infection genetics and modes of non-random mating that do not generate substantial sexual selection. In cases where such conditions are not met, hosts may evolve random or assortative mating. Our analyses also reveal that coevolutionary interactions with hosts cause the evolution of non-random mating in parasites as well. In some cases, particularly those where mating occurs within groups, we find that assortative mating evolves sufficiently to catalyze sympatric speciation in the interacting species.  相似文献   

4.
DL Field  SC Barrett 《Molecular ecology》2012,21(15):3640-3643
Since Darwin's pioneering research on plant reproductive biology (e.g. Darwin 1877), understanding the mechanisms maintaining the diverse sexual strategies of plants has remained an important challenge for evolutionary biologists. In some species, populations are sexually polymorphic and contain two or more mating morphs (sex phenotypes). Differences in morphology or phenology among the morphs influence patterns of non-random mating. In these populations, negative frequency-dependent selection arising from disassortative (intermorph) mating is usually required for the evolutionary maintenance of sexual polymorphism, but few studies have demonstrated the required patterns of non-random mating. In the current issue of Molecular Ecology, Shang et al. (2012) make an important contribution to our understanding of how disassortative mating influences sex phenotype ratios in Acer pictum subsp. mono (painted maple), a heterodichogamous, deciduous tree of eastern China. They monitored sex expression in 97 adults and used paternity analysis of open-pollinated seed to examine disassortative mating among three sex phenotypes. Using a deterministic 'pollen transfer' model, Shang et al. present convincing evidence that differences in the degree of disassortative mating in progeny arrays of the sex phenotypes can explain their uneven frequencies in the adult population. This study provides a useful example of how the deployment of genetic markers, demographic monitoring and modelling can be integrated to investigate the maintenance of sexual diversity in plants.  相似文献   

5.
Significant assortative mating in laboratory studies has been previously shown between two populations of Drosophila melanogaster collected from micro-climactically contrasting and opposing slopes of 'Evolution Canyon' (Lower Nahal Oren, Israel; Korol et al., 2000). Coupled with evidence that the two populations are adapted to their respective environments, this has been suggested as a rare example of ongoing behaviourally mediated speciation occurring in the face of gene flow. Reproductive isolation between these populations, however, has never been confirmed by replicate experiments in an independent laboratory. For this reason, we tested recent collections of these populations for premating isolation in both the original (Haifa) and a new (Burnaby) laboratory under a variety of experimental protocols. Although non-random mating was found in the majority of trials conducted in Haifa, we were unable to replicate these strong results in Burnaby. Most notably, we failed to detect assortative mating in four separate double choice experiments. Significant non-random mating was detected, however, in three of six single choice experiments in Burnaby, suggesting that the populations are behaviourally differentiated in some manner. Why nonrandom mating was weaker in Burnaby than Haifa is not understood, but suggests that assortative mating may be sensitive to unknown environmental factors.  相似文献   

6.

Background

The risk of long-term unequal contribution of mating pairs to the gene pool is that deleterious recessive genes can be expressed. Such consequences could be alleviated by appropriately designing and optimizing breeding schemes i.e. by improving selection and mating procedures.

Methods

We studied the effect of mating designs, random, minimum coancestry and minimum covariance of ancestral contributions on rate of inbreeding and genetic gain for schemes with different information sources, i.e. sib test or own performance records, different genetic evaluation methods, i.e. BLUP or genomic selection, and different family structures, i.e. factorial or pair-wise.

Results

Results showed that substantial differences in rates of inbreeding due to mating design were present under schemes with a pair-wise family structure, for which minimum coancestry turned out to be more effective to generate lower rates of inbreeding. Specifically, substantial reductions in rates of inbreeding were observed in schemes using sib test records and BLUP evaluation. However, with a factorial family structure, differences in rates of inbreeding due mating designs were minor. Moreover, non-random mating had only a small effect in breeding schemes that used genomic evaluation, regardless of the information source.

Conclusions

It was concluded that minimum coancestry remains an efficient mating design when BLUP is used for genetic evaluation or when the size of the population is small, whereas the effect of non-random mating is smaller in schemes using genomic evaluation.  相似文献   

7.
We reasoned that mating animals by minimising the covariance between ancestral contributions (MCAC mating) will generate less inbreeding and at least as much genetic gain as minimum-coancestry mating in breeding schemes where the animals are truncation-selected. We tested this hypothesis by stochastic simulation and compared the mating criteria in hierarchical and factorial breeding schemes, where the animals were selected based on breeding values predicted by animal-model BLUP. Random mating was included as a reference-mating criterion. We found that MCAC mating generated 4% to 8% less inbreeding than minimum-coancestry mating in the hierarchical and factorial breeding schemes without any loss in genetic gain. Moreover, it generated upto 28% less inbreeding and about 3% more genetic gain than random mating. The benefits of MCAC mating over minimum-coancestry mating are worthwhile because they can be achieved without extra costs or practical constraints. MCAC mating merely uses pedigree information to pair the animals more appropriately and is clearly a worthy alternative to minimum-coancestry mating and probably any other mating criterion. We believe, therefore, that MCAC mating should be used in breeding schemes where pedigree information is available.  相似文献   

8.
If the population is large and the sampling mechanism is random, the coalescent is commonly used to model the haplotypes in the sample. Ordered genotypes can then be formed by random matching of the derived haplotypes. However, this approach is not realistic when (1) there is departure from random mating (e.g., dominant individuals in breeding populations or monogamy in humans), or (2) the population is small and/or the individuals in the sample are ascertained by applying some particular non-random sampling scheme, as is usually the case when considering the statistical modeling and analysis of pedigree data. For such situations, we present here a data generation method where an ancestral graph with non-overlapping generations is first generated backwards in time, using ideas from coalescent theory. Alleles are randomly assigned to the founders, and subsequently the gene flow over the entire genome is simulated forwards in time by dropping alleles down the graph according to recombination model without interference. The parameters controlling the mating behavior of generated individuals in the graph (degree of monogamy) can be tuned in order to match a particular demographic situation, without restriction to simple random mating.The performance of the approach is illustrated with a simulation example. The software (written in C-language) is freely available for research purposes at http://www.rni.helsinki.fi/∼dag/.  相似文献   

9.
We have examined the fitness consequences of random and potentially non-random matings within two populations taken from inside, and two from outside a hybrid zone in Chorthippus parallelus. When given the opportunity to mate non-randomly, females from all populations laid egg pods more quickly than females obliged to mate at random. A range of fitness parameters measured on the offspring did not show increased fitness following potential non-random mating for any population. However, in non-hybrid populations, the sons of non-randomly mated females had about twice the mating success of the sons of those females forced to mate at random, suggesting the existence of heritable variation for male reproductive success. Hybrid dysfunction did not occur amongst the offspring of randomly mated hybrid females, demonstrating that the lack of dysfunction within these populations is not due to the evolution of assortative mating within them.  相似文献   

10.
Intrasexual polymorphisms have evolved in a wide range of organisms.Most of them have been interpreted as the product of conditionalstrategies in which the tactic an individual adopts is determinedby some aspect of state (e.g., age, size, condition). However,there are a few examples that appear to represent an evolutionarilystable mixture of heritable pure strategies that are maintainedby frequency-dependent selection. In the present study, we producea model of a mating system with two morphs: a territorial morphand a sneak morph. By varying the costs and limits associatedwith conditional strategies, mating skew, and the proportionof matings obtained by sneaking males, we examine the conditionsthat favor the evolution of conditional versus pure strategies.Contrary to current thinking, our results show that as longas either costs or limits are greater than zero, conditionalstrategists are never able to entirely replace pure strategists,and equilibrium populations may frequently consist of a mixtureof conditional and pure strategists. Our results suggest thatconditional strategists will be most frequent at intermediatelevels of mating skew. Polymorphisms in which conditional strategistsare rare or absent are most likely to evolve when mating skewis extremely high, the costs and limits of plasticity are veryhigh, or the benefits of being conditional are very low. Thelimited data available suggest that high mating skew is probablythe most important factor.  相似文献   

11.
Due to the increasing power of personal computers, as well as the availability of flexible forward-time simulation programs like simuPOP, it is now possible to simulate the evolution of complex human diseases using a forward-time approach. This approach is potentially more powerful than the coalescent approach since it allows simulations of more than one disease susceptibility locus using almost arbitrary genetic and demographic models. However, the application of such simulations has been deterred by the lack of a suitable simulation framework. For example, it is not clear when and how to introduce disease mutants—especially those under purifying selection—to an evolving population, and how to control the disease allele frequencies at the last generation. In this paper, we introduce a forward-time simulation framework that allows us to generate large multi-generation populations with complex diseases caused by unlinked disease susceptibility loci, according to specified demographic and evolutionary properties. Unrelated individuals, small or large pedigrees can be drawn from the resulting population and provide samples for a wide range of study designs and ascertainment methods. We demonstrate our simulation framework using three examples that map genes associated with affection status, a quantitative trait, and the age of onset of a hypothetical cancer, respectively. Nonadditive fitness models, population structure, and gene–gene interactions are simulated. Case-control, sibpair, and large pedigree samples are drawn from the simulated populations and are examined by a variety of gene-mapping methods.  相似文献   

12.
Assortative mating is an important factor in the process of speciation. Models of speciation frequently deal with small founder populations often with mating preferences based on ecological traits or habitat preferences. Small populations, on the other hand might suffer from inbreeding. However, few studies have explored the combined effects of assortative mating and inbreeding in such populations. Can they speciate, or are they doomed to eventually go extinct? With this simulation we show that assortative mating based on similarities increases the possibility for change in a population, as long as the population does not suffer from inbreeding depression. Inbred populations seem not to be able to cope with strong assortative mating, as this is likely to elevate the level of inbreeding, increasing the risks of inbreeding depression and as a result decreasing population mean fitness. This in turn hinders the possibility of change, and instead might drive the population to extinction.  相似文献   

13.
The strong microscale interslope environmental differences in "Evolution Canyon" provide an excellent natural model for sympatric speciation. Our previous studies revealed significant slope-specific differences for a fitness complex of Drosophila. This complex involved either adaptation traits (tolerance to high temperature, different viability and longevity pattern) or behavioural differentiation, manifested in habitat choice and non-random mating. This remarkable differentiation has evolved despite a very small interslope distance (a few hundred metres only). Our hypothesis is that strong interslope microclimatic contrast caused differential selection for fitness-related traits accompanied by behavioural differentiation and reinforced by some sexual isolation, which started incipient speciation. Here we describe the results of a systematic analysis of sexual behaviour in a non-choice situation and several reproductive parameters of D. melanogaster populations from the opposite slopes of "Evolution Canyon". The evidence indicates that: (i) mate choice derives from differences in mating propensity and discrimination; (ii) females from the milder north-facing slope discriminate strongly against males of the opposite slope; (iii) both sexes of the south-facing slope display distinct reproductive and behavioural patterns with females showing increased fecundity, shorter time before remating and relatively higher receptivity, and males showing higher mating propensity. These patterns represent adaptive life strategies contributing to higher fitness.  相似文献   

14.
The selection theory proposed by Muralidharan and Jain (1992a, b; Biom. J. 34 , 147–152, 633–637) was re-examined. Although they concluded that the theory is appropriate for any system of mating, the author showed that it is not applicable to inbreeding populations, which is the most important type of non-random mating.  相似文献   

15.
How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past.  相似文献   

16.
 Genetic gain equations are developed for selection on multiple traits using either multi- or univariate best linear unbiased predictors (BLUP) and for selection under controlled and open pollination and polymix mating schemes. The equations assume an infinite population and account for the effects of selection. A comparison with simulated populations under the same mating schemes show that the gain equations predict selection response well, with the predictions having some upward bias. The gain equations are used to compare across mating schemes, to compare univariate to multivariate analyses, and to measure the reduction in the rate of genetic gain due to selection disequilibrium. Results show controlled pollination schemes can offer as much as a 56% advantage in genetic gain relative to open pollination. The reduction in the rate of genetic gain due to selection disequilibrium is approximately 27% under controlled pollination for the breeding goals studied. The results show a limited benefit in using multivariate analyses for predicting breeding values. Received: 20 April 1997 / Accepted: 8 October 1997  相似文献   

17.
Knowledge of how mating success is related to body size may provide insight into the evolution of social systems. This study investigated the mating system and relevant social behavior of a temperate anuran (Rana chensinensis) at three localities in northern China. During chorusing, males aggregated and persisted in the communal spawning ponds with a density of 10–26 frogs per m2 water area and operational sex ratio of 15–28 males to 1 female. The males frequently grabbed any conspecifics they encountered, releasing the grip if the individual was a male, but holding the grip when it was a female. A significant positive relationship between male and female body lengths of pairs in amplexus was detected from all the sites during the five breeding seasons, but the average correlation coefficients of determination of 18% indicated that the size-assortative mating constituted a minority of the species’ mating system. Pairing probability decreased with increased size differences between sexes, which could have prevented a few adult animals in a population from forming pairs. The strong aggregation of males could limit the opportunities for large males to exhibit contest advantages in mating and for both sexes to choose a large mate. Infrequent occurrence of scramble competition (averaging 8% of the recorded amplectant pairs) and the lack of observed takeovers, probably because of reclusion of amplectant pairs at the bottom of spawning ponds, suggested a weak role of amplexus displacement in generating non-random mating. Our results suggest that although non-random mating with respect to body size may be expected in explosive breeders, the social environment characterized by male aggregation may also impose weak selective pressure for the evolution of non-random mating.  相似文献   

18.
When every individual has an equal chance of mating with other individuals, the population is classified as panmictic. Amongst metazoan parasites of animals, local-scale panmixia can be disrupted due to not only non-random mating, but also non-random transmission among individual hosts of a single host population or non-random transmission among sympatric host species. Population genetics theory and analyses can be used to test the null hypothesis of panmixia and thus, allow one to draw inferences about parasite population dynamics that are difficult to observe directly. We provide an outline that addresses 3 tiered questions when testing parasite panmixia on local scales: is there greater than 1 parasite population/species, is there genetic subdivision amongst infrapopulations within a host population, and is there asexual reproduction or a non-random mating system? In this review, we highlight the evolutionary significance of non-panmixia on local scales and the genetic patterns that have been used to identify the different factors that may cause or explain deviations from panmixia on a local scale. We also discuss how tests of local-scale panmixia can provide a means to infer parasite population dynamics and epidemiology of medically relevant parasites.  相似文献   

19.
Abstract When mating is non-random among several, compatible donors, the fitness of pollen donors, maternal plants, and offspring may be affected. Although this process may be important, it is much less studied than other forms of non-random mating such as incompatibility and avoidance of inbreeding. Therefore, the amount and consequences of non-random mating were investigated in greenhouse studies with wild radish, Raphanus sativus . Six compatible donors differed in the number, position, and weight of seeds sired, so mating was non-random at the level of mate identity. Mate number also affected mating patterns; fruits with more fathers were allocated more resources. This keeps mate number per fruit high. In contrast, other processes appear to keep mate number below the maximum so that mate number per fruit is regulated at an intermediate level. Mate identity had clear consequences as offspring with different fathers were of different sizes after 11 weeks. The effects of mate number on offspring success were less clear. These and other data suggest that non-random mating among compatible donors is a relatively common process in wild radish. It may occur through mechanisms controlled by the pollen tubes, the maternal plants or the embryos. While this non-random mating is the raw maternal for sexual selection in plants, whether sexual selection actually occurs and how important it may be is still nuclear.  相似文献   

20.
Galician exposed shore populations of the direct developing periwinkle Littorina saxatilis are strikingly polymorphic, with an ornamented and banded upper shore form and a smooth and unbanded lower shore form. Intermediates between the two pure forms occur in a narrow mid shore zone together with the parental forms. We have previously shown that the two pure forms share the same gene pool but that mating between them is non-random. This is due to a non-random microdistribution in the zone of overlap, and also to assortative mating. In this study we present data which show that intermediate (hybrid) females mate less often than pure females in micropatches dominated by either of the pure forms, but not in micropatches in which the two pure forms are equally common. Thus, sexual fitness in intermediate females depends on the frequency of both pure morphs. Furthermore, sexual selection against intermediate females also varies with the densities of snails within each micro patch. The biological mechanisms which may explain this particular reduction of female hybrid fitness are discussed. Assortative mating between the pure morphs is sometimes almost complete, while both morphs do not mate the intermediates assortatively. In the light of this, sexual selection against intermediate females may contribute considerably to restrict gene flow between the pure forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号