首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is difficult to think of any behavioural process that is more intrinsically important to us than attachment. Feeding, sleeping and locomotion are all necessary for survival, but humans are, as Baruch Spinoza famously noted, "a social animal" and it is our social attachments that we live for. Over the past decade, studies in a range of vertebrates, including humans, have begun to address the neural basis of attachment at a molecular, cellular and systems level. This review describes some of the important insights from this work.  相似文献   

2.
D T Chou  S Khan  J Forde  K R Hirsh 《Life sciences》1985,36(24):2347-2358
The development of tolerance to the stimulatory action of caffeine upon mesencephalic reticular neurons and upon spontaneous locomotor activity was evaluated in rats after two weeks of chronic exposure to low doses of caffeine (5-10 mg/kg/day via their drinking water). These doses are achievable through dietary intake of caffeine-containing beverages in man. Concomitant measurement of [3H]-CHA binding in the mesencephalic reticular formation was also carried out in order to explore the neurochemical basis of the development of tolerance. Caffeine, 2.5 mg/kg i.v., markedly increased the firing rate of reticular neurons in caffeine naive rats but failed to modify the neuronal activity in a group exposed chronically to low doses of caffeine. In addition, in spontaneous locomotor activity studies, our data show a distinct shift to the right of the caffeine dose-response curve in caffeine pretreated rats. These results clearly indicate that tolerance develops to the stimulatory action of caffeine upon the reticular formation at the single neuronal activity level as well as upon spontaneous locomotor activity. Furthermore, in chronically caffeine exposed rats, an increase in the number of binding sites for [3H]-CHA was observed in reticular formation membranes without any change in receptor affinity. We propose, therefore, that up-regulation of adenosine receptors may underlie the development of tolerance to the CNS effects of caffeine.  相似文献   

3.
To date, structure–function studies of aromatase cytochrome P450 (P450arom) have been advanced by point mutation analyses utilizing almost exclusively the human enzyme, in conjunction with computer-generated models of the three-dimensional form of the enzyme based on prokaryotic cytochromes P450. Recent studies have identified duplicated isozymes of porcine P450arom, the gonadal and placental forms of which appear to differ substantially in substrate utilization and inhibitor sensitivity. We present a comparative approach to define regions of P450arom responsible for specific functional characteristics using complimentary DNAs encoding the porcine isozymes. Constructs encoding the native and chimeric porcine and human P450arom enzymes were transiently expressed and activity was assessed using the tritiated water assay. Sensitivity to inhibition by the imidazole etomidate was investigated, and P450arom expression was assessed by immunoblot analysis. All constructs yielded active P450arom, suggesting that exchanging entire structural elements does not preclude catalytic function. The activity of the gonadal isozyme was shown to be inhibited by etomidate at concentrations 185 and 300-fold lower than those required to induce a similar inhibition of the placental and human enzymes, respectively. In contrast, there was only a two-fold difference in the sensitivity of the gonadal and placental isozymes to inhibition by CGS16949A. Analysis of chimeric constructs indicated that the sensitivity to etomidate was associated with residues in the B, B′ and C helices of the gonadal P450arom encompassing only one of six putative substrate recognition sites. Additionally, sensitivity to etomidate was not correlated with enzyme activity among the chimeric enzymes. Therefore, it appears that residues of the porcine gonadal P450arom that are responsible for etomidate binding may be distinct from those involved in substrate recognition and metabolism. These data support the notion that a comparative approach employing the use of chimeric enzymes provides a useful tool in directing point mutational analysis to determine residues important in inhibitor and perhaps substrate recognition of P450 enzymes such as P450arom. These studies are currently in progress.  相似文献   

4.
Humans live in highly complex social environments and some of our most important decisions are made in the context of social interactions. Research that probes the neural basis of decision-making in the context of social interactions combines behavioral paradigms from game theory with a variety of methods from neuroscience. The neural correlates of decision making in reciprocal exchange and bargaining games have been probed with functional neuroimaging, transcranial magnetic stimulation, and pharmacological manipulations. These studies have begun to elucidate a set of brain regions and neurotransmitter systems involved in decision-making in social interactions.  相似文献   

5.
Pregnant female Sprague-Dawley rats were treated from day 12 through day 15 of gestation with procarbazine, an antineoplastic drug, and their offspring were subjected to tests of locomotor development and behavior. Treatment levels ranged from 0.5 mg/kg/day, a dose that produced no abnormalities, to 10 mg/kg/day, a dose that caused a marked micrencephaly in the absence of other teratological changes. Despite marked morphological brain changes, preweaning locomotor development, as assessed by open-field swimming activity and vertical grid climbing, was normal in all offspring. Post-weaning passive avoidance learning and retention were also normal. Groups that had been treated prenatally with teratogenic doses (5.0 and 10.0 mg/kg/day) displayed less rearing behavior in the open field, while ambulation in the periphery of the open field arena was unaffected. Groups treated with subteratogenic doses (0.5 and 1.0 mg/kg/day) did not differ from control. In addition to the behavioral studies, sodium-dependent high-affinity choline uptake and choline acetyltransferase activity (CAT) were measured (per mg protein) in the cortex and hippocampus of animals that had been exposed prenatally to either teratogenic or subteratogenic doses of procarbazine. In spite of a substantial reduction in size of both brain structures in the group receiving a teratogenic dose, choline uptake and CAT did not differ from control.  相似文献   

6.
This study examined three aspects of protogynous sex change in Lythrypnus dalli (Gobiidae): (1) social influences on the rate of sex change, (2) the sequence of behavioural changes, and (3) neuroendocrine changes. Social groups consisted of either four females, or four females with a male who was subsequently removed. Sex change occurred most rapidly in male- removed groups when the sex changer was larger than other females. Sex changers in female only groups and sex changers not larger than other females in male-removed groups changed sex at similar rates. These differences may be explained by two factors that affect dominance: prior knowledge of the social group and greater size. Sex changers were dominant to other females prior to male removal, and larger sex changers increased displacement rates three-fold immediately after male removal. Sex changers in the other groups did not show this increase in displacements. This early establishment of dominance accounts for the overall difference in the rate of sex change. Prior to spawning, however, all sex changers increased displacements and performed male-typical displays. Arginine vasotocin-immunoreactive forebrain cells of sex changers were similar in size to field-collected males, and larger than field-collected females. Previously nesting males also changed sex in male-only groups, but at slow rates. These data are combined with those of existing studies to generate an integrative model of sex change in this goby. Received: 17 March 1999 / Received in revised form: 15 May 1999 / Accepted: 28 May 1999  相似文献   

7.
CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.  相似文献   

8.
9.
10.
A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation. This review examines behavioral, neurophysiological and neuroanatomical evidence supporting a role for cannabinoids in suppressing nociceptive transmission at spinal and peripheral levels. The development of subtype-selective competitive antagonists and high-affinity agonists provides the pharmacological tools required to study cannabinoid antinociceptive mechanisms. These studies provide insight into the functional roles of cannabinoid receptor subtypes, CB1 and CB2, in cannabinoid antinociceptive mechanisms as revealed in animal models of acute and persistent (somatic inflammatory, visceral inflammatory, neuropathic) pain. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing.  相似文献   

11.
Prospect theory proposes the hypothesis that people have diminishing sensitivity in valuing increases in the size of monetary outcomes, for both gains and losses. For decision-making under risk, this implies a tendency to be risk-tolerant over losses while being generally risk averse over gains. We offer a neurochemistry-based model of the diminishing valuation sensitivity hypothesis. Specifically, we propose that dopamine tone modulates the sensitivity towards valuation of gains while serotonin tone modulates the sensitivity towards valuation of losses. Consequently, higher dopamine tone would yield a more concave valuation function over gains while higher serotonin tone would yield a more convex valuation function over losses. Using a neurogenetics strategy to test our neurochemical model, we find that subjects with the 9-repeat allele of DAT1 (lower DA tone) are more risk-tolerant over gains than subjects with the 10-repeat allele, and that subjects with the 10-repeat allele of STin2 (higher 5HT tone) are more risk-tolerant over losses than subjects with the 12-repeat allele. Overall, our results support the implications of our model and provide the first neurogenetics evidence that risk attitudes are partially hard-wired in differentiating between gain- and loss-oriented risks.  相似文献   

12.
Introduction: comparative neurobiology of peptidergic systems   总被引:1,自引:0,他引:1  
  相似文献   

13.
Neurosteroids are a subclass of steroids that can be synthesized in the central nervous system independently of peripheral sources. Several neurosteroids influence cognitive functions. Indeed, in senescent animals we have previously demonstrated a significant correlation between the cerebral concentration of pregnenolone sulfate (PREG-S) and cognitive performance. Indeed, rats with memory impairments exhibited low PREG-S concentrations compared to animals with correct memory performance. Furthermore, these memory deficits can be reversed by intracerebral infusions of PREG-S. Neurotransmitter systems modulated by this neurosteroid were unknown until our recent report of an enhancement of acetylcholine (ACh) release in basolateral amygdala, cortex, and hippocampus induced by central administrations of PREG-S. Central ACh neurotransmission is involved in the regulation of memory processes and is affected in normal aging and in human neurodegenerative pathologies like Alzheimer's disease. ACh neurotransmission is also involved in the modulation of sleep-wakefulness cycle and relationships between paradoxical sleep and memory are well documented in the literature. PREG-S infused at the level of ACh cell bodies induces a dramatic increase of paradoxical sleep in young animals. Cognitive dysfunctions, particularly those observed in Alzheimer's disease, have also been related to alterations of cerebral plasticity. Among these mechanisms, neurogenesis has been recently studied. Preliminary data suggest that PREG-S central infusions dramatically increase neurogenesis. Taken together these data suggest that PREG-S can influence cognitive processes, particularly in senescent subjects, through a modulation of ACh neurotransmission associated with paradoxical sleep modifications; furthermore our recent data suggest a role for neurosteroids in the modulation of hippocampal neurogenesis.  相似文献   

14.
Well-being: towards an integration of psychology, neurobiology and social science  相似文献   

15.
Koh B  Crews CM 《Neuron》2002,36(4):563-566
Chemical genetics, or the specific modulation of cellular systems by small molecules, has complemented classical genetic analysis throughout the history of neurobiology. We outline several of its contributions to the understanding of ion channel biology, heat and cold signal transduction, sleep and diurnal rhythm regulation, effects of immunophilin ligands, and cell surface oligosaccharides with respect to neurobiology.  相似文献   

16.
Language is a defining characteristic of our species that has emerged quite recently on an evolutionary timescale. Understanding the neurobiological substrates and genetic underpinnings of language constitutes a basic challenge for both neuroscience and genetics. The functional localization of language in the brain has been progressively refined over the last century through studies of aphasics and more recently through neuroimaging. Concurrently, structural specializations in these brain regions have been identified by virtue of their lateralization in humans and also through comparisons with homologous brain regions in non-human primate species. Comparative genomics has revealed the genome of our closest living relative, the chimpanzee, to be astonishingly similar to our own. To explore the role that changes in the regulation of gene expression have had in recent human evolution, several groups have used microarrays to compare expression levels for thousands of genes in the brain between humans and chimpanzees. By applying this approach to the increasingly refined peri-sylvian network of brain regions involved in language, it may be possible to discern functionally significant changes in gene expression that are universal among humans but unique to our species, thus casting light on the molecular basis of language in the brain.  相似文献   

17.
Variational methods play a fundamental and unifying role in several fields of physics, chemistry, engineering, economics, and biology, as they allow one to derive the behavior of a system as a consequence of an optimality principle. A possible application of these methods to a model of perception is given by considering a psychophysical law as the solution of an Euler-Lagrange equation. A general class of Lagrangians is identified by requiring the measurability of prothetic continua on interval scales. The associated Hamiltonian (the energy of the process) is tentatively connected with neurophysiological aspects. As an example of the suggested approach a particular choice of the Lagrangian, that is a sufficient condition to obtain classical psychophysical laws, while accounting for psychophysical adaptation and the stationarity of neuronal activity, is used to explore a possible relation between a behavioral law and a neuroelectrical ,response based on the Naka-Rushton model.  相似文献   

18.
Cocaine abuse remains prevalent worldwide and continues to be a major health concern; nonetheless, there is no effective therapy. Immunopharmacotherapy has emerged as a promising treatment strategy by which anti-cocaine antibodies bind to the drug blunting its effects. Previous passive immunization studies using our human monoclonal antibody, GNCgzk, resulted in protection against cocaine overdose and acute toxicity. To further realize the clinical potential of this antibody, a recombinant IgG form of the antibody has been produced in mammalian cells. This antibody displayed a high binding affinity for cocaine (low nanomolar) in line with the superior attributes of the GNCgzk antibody and reduced cocaine-induced ataxia in a cocaine overdose model.  相似文献   

19.
The proposal of cholinomimetic treatment as a rational basis for the therapy of Alzheimer's disease has been prematurely dismissed by some workers on the hypothesis of impaired coupling/signal transduction of postsynaptic cholinergic receptors. Disparity of reports studying such impairment may be due to inappropriate extrapolation of experimental systems to the physiological stituation, as well as inadequate consideration of disease epiphenoma. In the present study we have used samples with short duration of terminal coma, collected using techniques to minimise postmortem autolysis, and samples obtained during neurosurgery to examine carbachol stimulated hydrolysis of [3H]phosphatidylinositol (PI) as a marker for receptor/signal transduction integrity. The influence of postmortem delay was also studied using another series of samples and a rat model. While a significant correlation of postmortem delay and carbachol stimulated [3H]PI hydrolysis was found, comparison of pooled neurosurgical and postmortem controls with AD samples revealed no significant reduction. Thus this study concurs with a similar one previously reported here, using [3H]phosphatidylinositol 4,5-bisphosphate (1). They provide evidence for competent receptor-signal transduction events in AD, supporting the use of cholinomimetic therapy for disease treatment.  相似文献   

20.
Across taxa, individuals must respond to a dynamic social environment of challenges and opportunities on multiple biological levels, including behavior, hormone profiles, and gene expression. We investigated the response to a complex social environment including both territorial challenges and reproductive opportunities in the African cichlid fish Astatotilapia burtoni (Burton's mouthbrooder), a species well-known for its phenotypic plasticity. Male A. burtoni are either socially dominant or subordinate and can transition between the two phenotypes. We used this transition to simultaneously study changes in aggression, reproductive behavior, testosterone and estradiol levels, gonadal histology, and testes expression of three genes involved in testosterone synthesis. We have found that males immediately become aggressive and increase testosterone levels when they become dominant in this paradigm of challenge and opportunity. Reproductive behavior and estradiol increase slightly later but are also up-regulated within 24h. Increases in steroid hormone levels are accompanied by an increase in expression of steroidogenic acute regulatory protein (StAR), the rate-limiting enzyme during testosterone synthesis, as well as an increase in testis maturation as measured by histological organization. Reproductive behavior was found to correlate with female gravidity, suggesting that males were able to perceive reproductive opportunity. Our study demonstrates the rapid plasticity at multiple levels of biological organization that animals can display in response to changes in their complex social environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号