首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Effects of protein kinase C (PKC) activation on the insulin-secretory process were investigated, by using beta-cell-rich suspensions obtained from pancreatic islets of obese-hyperglycaemic mice. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which is known to activate PKC directly, the muscarinic-receptor agonist carbamoylcholine and high glucose concentration enhanced the phosphorylation of a specific 80 kDa PKC substrate in the beta-cells. At a non-stimulatory glucose concentration, 10 nM-TPA increased insulin release, although there were no changes in either the cytoplasmic free Ca2+ concentration ([Ca2+]i) or membrane potential, as measured with the fluorescent indicators quin-2 and bisoxonol respectively. At a stimulatory glucose concentration TPA caused a lowering in [Ca2+]i, whereas membrane potential was unaffected. Despite the decrease in [Ca2+]i, there was a large stimulation of insulin release. Addition of TPA lowered [Ca2+]i also in beta-cells stimulated by tolbutamide or high K+, although to a lesser extent than in those stimulated by glucose. There was no effect of TPA on either Ca2+ buffering or the ability of Ins(1,4,5)P3 to release Ca2+ in permeabilized beta-cells. However, the phorbol ester inhibited the rise in [Ca2+]i in response to carbamoylcholine, which stimulates the formation of InsP3, in intact beta-cells. Down-regulation of PKC influenced neither glucose-induced insulin release nor the increase in [Ca2+]i. Hence, although PKC activation is of no major importance in glucose-stimulated insulin release, this enzyme can serve as a modulator of the glucose-induced insulin-secretory response. Such a modulation involves mechanisms promoting both amplification of the secretory response and lowering of [Ca2+]i.  相似文献   

2.
The metabolism of L-asparagine in pancreatic islets was investigated. The deamidation of L-asparagine and the conversion of aspartate to oxalacetate, by transamination, may occur in both the cytosol and mitochondria. Oxalacetate is then converted to pyruvate in part via phosphoenolpyruvate and in part via malate. The latter modality, by consuming NADH and generating NADPH, may lead to changes in the redox state of the cytosolic NADH/NAD+ and NADPH/NADP+ couples. Such changes may in turn account, in part at least, for the capacity of L-asparagine to augment insulin release induced by certain nutrient secretagogues.  相似文献   

3.
4.
Enzymes of glucose metabolism in normal mouse pancreatic islets   总被引:14,自引:14,他引:0       下载免费PDF全文
1. Glucose-phosphorylating and glucose 6-phosphatase activities, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP+-linked isocitrate dehydrogenase, `malic' enzyme and pyruvate carboxylase were assayed in homogenates of normal mouse islets. 2. Two glucose-phosphorylating activities were detected; the major activity had Km 0.075mm for glucose and was inhibited by glucose 6-phosphate (non-competitive with glucose) and mannoheptulose (competitive with glucose). The other (minor) activity had a high Km for glucose (mean value 16mm) and was apparently not inhibited by glucose 6-phosphate. 3. Glucose 6-phosphatase activity was present in amounts comparable with the total glucose-phosphorylating activity, with Km 1mm for glucose 6-phosphate. Glucose was an inhibitor and the inhibition showed mixed kinetics. No inhibition of glucose 6-phosphate hydrolysis was observed with mannose, citrate or tolbutamide. The inhibition by glucose was not reversed by mannoheptulose. 4. 6-Phosphogluconate dehydrogenase had Km values of 2.5 and 21μm for NADP+ and 6-phosphogluconate respectively. 5. Glucose 6-phosphate dehydrogenase had Km values of 4 and 22μm for NADP+ and glucose 6-phosphate. The Km for glucose 6-phosphate was considerably below the intra-islet concentration of glucose 6-phosphate at physiological extracellular glucose concentrations. The enzyme had no apparent requirement for cations. Of a number of possible modifiers of glucose 6-phosphate dehydrogenase, only NADPH was inhibitory. The inhibition by NADPH was competitive with NADP+ and apparently mixed with respect to glucose 6-phosphate. 6. NADP+–isocitrate dehydrogenase was present but the islet homogenate contained little, if any, `malic' enzyme. The presence of pyruvate carboxylase was also demonstrated. 7. The results obtained are discussed with reference to glucose phosphorylation and glucose 6-phosphate oxidation in the intact mouse islet, and the possible nature of the β-cell glucoreceptor mechanism.  相似文献   

5.
Rat ovarian luteinizing hormone/human choriogonadotropin binding sites were labelled with 125I-choriogonadotropin in vivo, and the resulting 125I-choriogonadotropin-receptor complexes were solubilized by Triton X-100 and purified by use of antibodies to choriogonadotropin immobilized to agarose. The purified 125I-choriogonadotropin-receptor complex was treated with glutaraldehyde to crosslink radiolabelled hormone to the receptor. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the crosslinked product revealed a labelled Mr 130 000 major band in addition to the hormone and its alpha-subunit, indicating that a single receptor component was linked to the hormone. Unoccupied binding sites for luteinizing hormone were also solubilized by Triton X-100 from pseudopregnant rat ovaries, and attached to choriogonadotropin-agarose. The agarose gel was washed, and eluted with 0.1 M-sodium acetate, pH 4. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the pH 4 eluate revealed an Mr 90 000 major band which was abolished when ovaries presaturated with choriogonadotropin were used as starting material. These observations suggest that the hormone-binding component of the luteinizing hormone receptor is a polypeptide of Mr 90 000. This polypeptide was isolated and labelled with Na 125I. The labelled polypeptide showed a single band on sucrose density gradient centrifugation and on gel filtration on agarose.  相似文献   

6.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   

7.
8.
9.
Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. L-Asparagine augmented the oxidation of L-leucine, an effect possibly attributable to activation of 2-ketoisocaproate dehydrogenase. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   

10.
11.
The effects of glucose, a series of glucose metabolites, nicotinamide nucleotides, Ca2+ and p-chloromercuribenzenesulphonate on adenylate cyclase activity in homogenates of mouse pancreatic islets were studied. The basal activity of the adenylate cyclase was approx. 6 pmol of cyclic AMP formed/30 min per microng of DNA at 30 degrees C. The enzyme activity was stimulated by some 150% by fluoride. Starvation of the animals for 48h had no effect on either the basal or the fluoride-stimulated activity. The adenylate cyclase activity was increased by 40-50% when 17 mM-glucose, 10 micronM-phosphoenolpyruvate or 10 micronM-pyruvate was added to the assay medium. The effect of glucose was unchanged in the presence of 17 mM-mannoheptulose, and mannoheptulose alone had no effect. The other glycolytic intermediates, and the coenzymes NAD+, NADH and NADPH, at concentrations up to 1 mM were without any detectable effect on the rate of formation of cyclic AMP. The insulin secretagogue p-chloromercuribenzenesulphonate inhibited the adenylate cyclase markedly even at a concentration of 10 micronM. Calculated concentrations of free Ca2+ of 10 micronM and 0.1 mM inhibited adenylate cyclase by 29 and 71% respectively. It is concluded that both glucose itself and phosphoenolpyruvate and/or pyruvate are true activating ligands for islet and adenylate cyclase and that inhibition of the cyclase by Ca2+ may be of physiological significance.  相似文献   

12.
Maitotoxin (MTX) provoked a dose-dependent increase in both 45Ca efflux and insulin release from rat pancreatic islets perifused in the presence or absence of glucose, provided that Ca2+ was present in the perifusate. The stimulatory effect of MTX on 45Ca outflow was enhanced by CGP 28392. The toxin did not reduce 86Rb outflow and 86Rb inflow. It is suggested that the secretory response to MTX is mediated by direct activation of voltage-dependent Ca2+ channels.  相似文献   

13.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

14.
15.
16.
Rates of glucose oxidation and insulin release in response to a wide range of glucose concentrations were studied in short-term experiments in isolated mouse pancreatic islets maintained in tissue culture for 6 days at either a physiological glucose concentration (6.7mm) or at a high glucose concentration (28mm). The curves relating glucose oxidation or insulin release to the extracellular glucose concentration obtained with islets cultured in 6.7mm-glucose displayed a sigmoid shape similar to that observed for freshly isolated non-cultured islets. By contrast islets that had been cultured in 28mm-glucose showed a linear relationship between the rate of glucose oxidation and the extracellular glucose concentration up to about 8mm-glucose. The maximal oxidative rate was twice that of the non-cultured islets and the glucose concentration associated with the half-maximal rate considerably decreased. In islets cultured at 28mm-glucose there was only a small increase in the insulin release in response to glucose, probably due to a depletion of stored insulin in those B cells that had been cultured in a high-glucose medium. It is concluded that exposure of B cells for 6 days to a glucose concentration comparable with that found in diabetic individuals causes adaptive metabolic alterations rather than degeneration of these cells.  相似文献   

17.
Glucose metabolism in mouse pancreatic islets   总被引:13,自引:22,他引:13  
1. Rates of glucose oxidation, lactate output and the intracellular concentration of glucose 6-phosphate were measured in mouse pancreatic islets incubated in vitro. 2. Glucose oxidation rate, measured as the formation of (14)CO(2) from [U-(14)C]glucose, was markedly dependent on extracellular glucose concentration. It was especially sensitive to glucose concentrations between 1 and 2mg/ml. Glucose oxidation was inhibited by mannoheptulose and glucosamine but not by phlorrhizin, 2-deoxyglucose or N-acetylglucosamine. Glucose oxidation was slightly stimulated by tolbutamide but was not significantly affected by adrenaline, diazoxide or absence of Ca(2+) (all of which may inhibit glucose-stimulated insulin release), by arginine or glucagon (which may stimulate insulin release) or by cycloheximide (which may inhibit insulin synthesis). 3. Rates of lactate formation were dependent on the extracellular glucose concentration and were decreased by glucosamine though not by mannoheptulose; tolbutamide increased the rate of lactate output. 4. Islet glucose 6-phosphate concentration was also markedly dependent on extracellular glucose concentration and was diminished by mannoheptulose or glucosamine; tolbutamide and glucagon were without significant effect. Mannose increased islet fructose 6-phosphate concentration but had little effect on islet glucose 6-phosphate concentration. Fructose increased islet glucose 6-phosphate concentration but to a much smaller extent than did glucose. 5. [1-(14)C]Mannose and [U-(14)C]fructose were also oxidized by islets but less rapidly than glucose. Conversion of [1-(14)C]mannose into [1-(14)C]glucose 6-phosphate or [1-(14)C]glucose could not be detected. It is concluded that metabolism of mannose is associated with poor equilibration between fructose 6-phosphate and glucose 6-phosphate. 6. These results are consistent with the idea that glucose utilization in mouse islets may be limited by the rate of glucose phosphorylation, that mannoheptulose and glucosamine may inhibit glucose phosphorylation and that effects of glucose on insulin release may be mediated through metabolism of the sugar.  相似文献   

18.
We evaluated the possible autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from normal hamsters. We measured 14CO2 and 3H2O production from d-[U-14C]glucose and d-[5-3H]glucose, respectively, in islets incubated with 0.6, 3.3, 8.3, and 16.7 mM glucose alone or with 5 or 15 mU/ml insulin, anti-insulin guinea pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured (radioimmunoassay) in islets incubated with 3.3 or 16.7 mM glucose with or without 75, 150, and 300 nM wortmannin. Insulin significantly enhanced 14CO2 and 3H2O production with 3.3 mM glucose but not with 0.6, 8.3, or 16.7 mM glucose. Addition of anti-insulin serum to the medium with 8.3 and 16.7 mM glucose decreased 14CO2 and 3H2O production significantly. A similar decrease was obtained in islets incubated with 8.3 and 16.7 mM glucose and wortmannin or nifedipine. This latter effect was reversed by adding 15 mU/ml insulin to the medium. Glucose metabolism was almost abolished when islets were incubated in a Ca2+-deprived medium, but this effect was not reversed by insulin. No changes were found in 14CO2 and 3H2O production by islets incubated with 3.3 mM glucose and anti-insulin serum, wortmannin, or nifedipine in the media. Addition of wortmannin significantly decreased insulin release induced by 16.7 mM glucose in a dose-dependent manner. Our results suggest that insulin exerts a physiological autocrine stimulatory effect on glucose metabolism in intact islets as well as on glucose-induced insulin release. Such an effect, however, depends on the glucose concentration in the incubation medium.  相似文献   

19.
Isolated rat pancreatic islets, incubated in the presence of extracellular 32Pi to steady state 32P incorporation into cellular phosphopeptides, were exposed to glucose for 10 min. Glucose (16.7 mM) significantly stimulated the phosphorylation of six phosphoproteins with molecular weights of 15,000, 35,000, 49,000, 64,000, 93,000 and 138,000. Mannoheptulose (16.7 mM) markedly inhibited glucose-stimulated phosphorylation of these six phosphoproteins. This protein phosphorylation might be important in mediating glucose-stimulated insulin release.  相似文献   

20.
Aromatic-L-amino-acid decarboxylase activity in mouse pancreatic islets   总被引:2,自引:0,他引:2  
Aromatic-L-amino-acid decarboxylase activity has been measured in intact or homogenised pancreatic islets of ob/ob mice (Ume? ob/ob). The method used involves the trapping and measuring of the 14CO2 released from L-[1-14C]dihydroxyphenylalanine (L-dopa). Islets showed a decarboxylase activity which was dependent on pyridoxal phosphate and inhibitable by 0.1 mM benserazide or 0.1 mM alpha-monofluoromethyldopa. Maximum activity in intact islets was about 330 mmol/kg dry islet per h with an apparent Km of 3.3 mM. Islet homogenates had a Vmax of about 120 mmol/kg per h with a Km of 0.3 mM. L-5-Hydroxytryptophan, m-tyrosine and o-tyrosine interfered with the decarboxylation of L-dopa in a way that suggested a high activity also towards those substrates. L-Phenylalanine, L-tyrosine and D-glucose had no effect. At 0.05 mM L-dopa islet homogenates showed a much higher activity than homogenates of liver, kidney, or spleen. Islet uptake of L-[3H]dopa was well in excess of the decarboxylation rate and thus probably not rate-limiting. It is concluded that mouse pancreatic islets have a high activity of aromatic-L-amino-acid decarboxylase. This is in accordance with previous suggestions of a stimulatory effect of this enzyme on insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号