首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundThis study tested the hypothesis that abnormal maternal metabolism of both homocysteine and thyroid hormone network in pregnant women is associated with neural tube defects (NTDs) in a part of China with high NTD prevalence.MethodsA case–control study was performed between 2007 and 2009 in Lüliang Mountains, Shanxi Province. This study included 83 pregnant women who had fetuses with NTDs (cases) and 90 pregnant women with normal fetuses (controls). In addition, a cell model to illustrate the epidemiological findings was established.ResultsFetuses of mother who had both high total homocysteine (tHcy) and inadequate free thyroxine were 3 times more at risk of developing NTDs (adjusted odds ratio = 3.5; 95 % confidence interval = 1.2–10.4; cases vs. controls) using multivariate logistic regression models. Furthermore, biological interaction between metabolisms of Hcy and thyroid hormones was demonstrated in vitro. In homocysteine thiolactone of a metabolite of Hcy-treated mouse embryonic neural stem NE4C cells, genes (Bmp7, Ctnnb1, Notch 1, Gli2, and Rxra) related to both neural tube closure and thyroid hormone network were shown to be regulated by H3K79 homocysteinylation, which increased their expression levels.ConclusionsThe effect of maternal serum high tHcy on risk of developing NTDs is depended on maternal serum level of thyroxine. Meanwhile, a higher level of tHcy might also affect both maternal metabolism of thyroid hormone and neural tube closure in embryogenesis through homocysteinylation of histones.  相似文献   

2.
Thyroid hormones and thyroid hormone receptors (TRs) confer a fundamental regulation of critical genes involved in metabolism, differentiation, and development. A similar role is attributed to the highly conserved zinc-finger factor CTCF. Furthermore, a potential role in tumour suppression has been attributed to CTCF. In addition to promoter regulation, CTCF has also been shown to be involved in chromatin insulation or enhancer blocking. In several cases, binding sites for TR and for CTCF have been found next to each other. Functionally, these sites mediate synergistic repression or induction dependent on the type of binding site and on the presence or absence of thyroid hormone. Here we discuss functional similarities between TR and CTCF and their roles within these composite elements.  相似文献   

3.
Thyroid-stimulating hormone (TSH)-induced reduction in ligand binding affinity (negative cooperativity) requires TSH receptor (TSHR) homodimerization, the latter involving primarily the transmembrane domain (TMD) but with the extracellular domain (ECD) also contributing to this association. To test the role of the TMD in negative cooperativity, we studied the TSHR ECD tethered to the cell surface by a glycosylphosphatidylinositol (GPI) anchor that multimerizes despite the absence of the TMD. Using the infinite ligand dilution approach, we confirmed that TSH increased the rate of dissociation (k(off)) of prebound (125)I-TSH from CHO cells expressing the TSH holoreceptor. Such negative cooperativity did not occur with TSHR ECD-GPI-expressing cells. However, even in the absence of added TSH, (125)I-TSH dissociated much more rapidly from the TSHR ECD-GPI than from the TSH holoreceptor. This phenomenon, suggesting a lower TSH affinity for the former, was surprising because both the TSHR ECD and TSH holoreceptor contain the entire TSH-binding site, and the TSH binding affinities for both receptor forms should, theoretically, be identical. In ligand competition studies, we observed that the TSH binding affinity for the TSHR ECD-GPI was significantly lower than that for the TSH holoreceptor. Further evidence for a difference in ligand binding kinetics for the TSH holoreceptor and TSHR ECD-GPI was obtained upon comparison of the TSH K(d) values for these two receptor forms at 4 °C versus room temperature. Our data provide the first evidence that the wild-type TSHR TMD influences ligand binding affinity for the ECD, possibly by altering the conformation of the closely associated hinge region that contributes to the TSH-binding site.  相似文献   

4.
5.
6.
7.
8.
More than a decade of research has shown that Sertoli cell proliferation is regulated by thyroid hormone. Neonatal hypothyroidism lengthens the period of Sertoli cell proliferation, leading to increases in Sertoli cell number, testis weight, and daily sperm production (DSP) when euthyroidism is re-established. In contrast, the neonatal Sertoli cell proliferative period is shortened under hyperthyroid conditions, but the mechanism by which thyroid hormone is able to negatively regulate Sertoli cell proliferation has been unclear. Recent progress in the understanding of the cell cycle has provided the opportunity to dissect the molecular targets responsible for thyroid-hormone-mediated effects on Sertoli cell proliferation. In this review, we discuss recent results indicating a critical role for the cyclin-dependent kinase inhibitors (CDKI) p27Kip1 and p21Cip1 in establishing Sertoli cell number, testis weight, and DSP, and the ability of thyroid hormone to modulate these CDKIs. Based on these recent results, we propose a working hypothesis for the way in which thyroid hormone regulates the withdrawal of the cell cycle by controlling CDKI degradation. Finally, although Sertoli cells have been shown to have two biologically active thyroid hormone receptor (TR) isoforms, TRα1 and TRβ1, experiments with transgenic mice lacking TRα or TRβ illustrate that only one TR mediates thyroid hormone effects in neonatal Sertoli cells. Although significant gaps in our knowledge still remain, advances have been made toward appreciation of the molecular sequence of events that occur when thyroid hormone stimulates Sertoli cell maturation. We gratefully acknowledge the support of this work by the NIH, USDA, the University of Illinois, the Lalor Foundation, and the Thanis A. Field Endowment at the University of Illinois. D.R. Holsberger was supported by postdoctoral fellowships from the Lalor Foundation and Reproductive Biology Research Training Program (NIH grant T32 HD07028), University of Illinois at Urbana–Champaign.  相似文献   

9.
Receptor binding techniques have been widely used in different biochemical applications, with isolated membranes being the most used receptor preparation in this type of assays. In this study, intact cells were compared with isolated membranes as receptor support for radioligand receptor binding assay. The growth hormone secretagogue receptor 1a (GHSR-1a) expressed in human embryonic kidney 293 (HEK293) cells was used as a model of G-protein-coupled receptors. Differences between using intact cells in suspension and using isolated membranes were evaluated for different aspects of the receptor binding assay: total binding variations while both receptor preparations remain on ice, modifications in incubation conditions, saturation, and competition using different agonists. Intact cells are more prone to variability. Although under optimized settings both preparations were equivalent, the Kd value for intact cells was three times higher than that using isolated membranes. However, no significant differences were observed in competition assays obtaining practically identical Ki values for all ligands tested. For the GHSR-1a, isolated membranes are the better choice if particular incubation conditions are required (less variability), whereas intact cells yield easy, fast, and physiological conditions for receptor binding assays.  相似文献   

10.
Summary Cells binding anti-bovine TSH serum were found exclusively in the rostral lobe of the adenohypophysis of the drake using the peroxidase-antiperoxidase complex unlabelled antibody method. The specificity of the binding of the anti-serum to TSH cells was established by relating the morphology and relative abundance of immunochemically stained cells to the TSH content of the adenohypophysis after experimentally altering the activity of the pituitary-thyroid axis. The TSH activity of the adenohypophysis was assessed indirectly, by the weight of the thyroid glands, and directly, by bioassay. As determined by bioassay, the TSH content of the rostral lobe of the adenohypohysis was much greater than that of the caudal lobe. Compared with control drakes, immunochemically stained cells in birds fed a goitrogen, methimazole, seemed to be enlarged and were closer together, while the stained cells in drakes injected with thyroxine were shrunken and less intensely stained. The TSH content of the adenohypophysis was increased in drakes fed methimazole. Castration did not alter the TSH content of the adenohypophysis or change the morphology of immunochemically stained cells. These observations suggest that in the drake: 1) anti-bovine TSH serum binds specifically to TSH cells; 2) the TSH cells occur in the rostral and not in the caudal lobe of the adenohypophysis; and 3) the activity of TSH cells is not inhibited by the feedback effects of gonadal steroids.We thank Dr. L.E. Reichert Jr. and the National Institute of Arthritis, Metabolic and Digestive Diseases for the gift of ovine TSH and Mr. R. Wilkie for technical assistance. We are grateful to Dr. M.F. El Etreby, Professor B.K. Follett, Dr. C.G. Scanes, Dr. J. Seth and Dr. J.G. Pierce for gifts of immunochemicals  相似文献   

11.
12.
Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor kappaB ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers' expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth.  相似文献   

13.
14.
During both spontaneous and thyroid hormone (TH)-induced metamorphosis, the Rana catesbeiana tadpole undergoes postembryonic developmental changes in its liver which are necessary for its transition from an ammonotelic larva to a ureotelic adult. Although this transition ultimately results from marked increases in the activities and/or de novo synthesis of the urea cycle enzymes, the precise molecular means by which TH exerts this tissue-specific response are presently unknown. Recent reports, using RNA from whole Xenopus laevis tadpole homogenates and indirect means of measuring TH receptor (TR) mRNAs, suggest a correlation between the up-regulation of TRβ-mRNAs and the general morphological changes occurring during amphibian metamorphosis. To assess whether or not this same relationship exists in a TH-responsive tissue, such as liver, we isolated and characterized a cDNA clone containing the complete nucleotide sequence for a R. catesbeiana urea cycle enzyme, ornithine transcarbamylase (OTC), as well as a genomic clone containing a portion of the hormone-binding domain of a R. catesbeiana TRβ gene. Through use of these homologous sequences and a heterologous cDNA fragment encoding rat carbamyl phosphate synthetase (CPS), we directly determined the relative levels of the TRβ, OTC, and CPS mRNAs in liver from spontaneous and TH-induced tadpoles. Our results establish that TH affects an up-regulation of mRNAs for its own receptor prior to up-regulating CPS and OTC mRNAs. Moreover, results with cultured tadpole liver demonstrate that TH, in the absence of any other hormonal influence, can affect an up-regulation of both the TRβ and OTC mRNAs. © 1992 Wiley-Liss, Inc.  相似文献   

15.
16.
Previous studies delineated two classes of δ binding sites; a δ binding site not associated with the opioid receptor complex, termed the δncx site, and a δ site associated with the opioid receptor complex, termed the δcx site. The δncx site has high affinity for [ -Pen2, -Pen5]enkephalin, and is synonymous with what is now identified as the δ1 binding site. Pretreatment of membranes with the δ-selective acylating agents FIT, or (+)-trans-SUPERFIT, deplete membranes of the δncx binding site, which permits the selective labeling of the δcx binding site with [3H][ -Ala2,Leu5]enkephalin. The present study compared the properties of the δcx binding site present in brain membranes pretreated with (+)-trans-SUPERFIT with the properties of the δcx site present in untreated membranes. The major findings are: 1) pretreatment of membranes with (+)-trans-SUPERFIT decreased the IC50 values of δ-preferring drugs, and increased the IC50 values of μ-preferring drugs, for the δcx binding site; 2) the degree of δ selectivity was highly correlated with the magnitude of the (+)-trans-SUPERFIT-induced shift in the IC50 values; 3) the ligand-selectivity patterns of the μ and δcx sites present in (+)-trans-SUPERFIT-pretreated membranes were poorly correlated; 4) whereas μ-preferring drugs were noncompetitive inhibitors of [3H][ -Ala2,Leu5]enkephalin binding to the δcx site, δ-preferring drugs were competitive inhibitors. Viewed collectively, these data support the hypothesis that the μ and δcx binding sites are distinct, provide additional evidence for δ receptor heterogeneity, and suggest that ( (+)-trans-SUPERFIT-pretreated membranes will provide a useful preparation for studying the δcx binding site.  相似文献   

17.
18.
Summary The development of calcitonin cells (C-cells) was investigated in rat thyroid glands from birth to 120 days, using an immunoperoxidase technique and a point-counting method. The proportion of C-cells to follicular cells was 4.5% on the day of birth and increased progressively to 10.4% by 120 days. The highest density of C-cells was noted in the mid-region of the lobes along a longitudinal axis. The caudal and cephalic regions of the lobes contained smaller numbers of C-cells. The C-cells tended to be more numerous in the posterior aspects of the lobes. Although the numbers of C-cells in 120-day-old animals were markedly increased as compared to animals at the time of birth, the cell distributions within the glands were similar at all ages.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号