首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A considerable excess of small ribosomal subunits was observed in L cells grown in suspension culture. The ratio between the small and large ribosomal subunits in the cytoplasm was estimated to be 1.17 ± 0.05 for cells dividing every 20 to 24 hours.The 60 S ribosomal subunits were turning over much faster than the 40 S subunits. Half-lives of 155 ± 20 hours for 18 S ribosomal RNA and 82 ± 15 hours for 28 S ribosomal RNA were observed under conditions where the cell number doubled every 24 hours and the viability was 95%. By correcting for cell death the half-lives of 18 S and 28 S ribosomal RNA were estimated to be approximately 300 hours and 110 hours, respectively. During storage of isolated ribosomes the small ribosomal subunits were degraded faster than the large subunits. This shows that the degradation of 60 S subunits was not an artifact taking place during the isolation procedure.It is postulated that the small ribosomal subunits are protected by protein to a greater extent than the 60 S subunits in these rapidly growing cells in suspension culture. The protection may take place both in the nucleus during synthesis, thus avoiding degradation (“wastage”) of nascent subunit precursors, and later in the cytoplasm. A calculation has been carried out to show that the observed excess of small subunits may be accounted for on the basis of a 1:1 synthesis of the small and large ribosomal subunits in the nucleus and different degradation rates in the cytoplasm. The results do not exclude the possibility of a difference in the “wastage” of 18 S and 28 S ribosomal RNA in the nucleus in addition to the difference in the turnover rates in the cytoplasm.  相似文献   

2.
Native and derived ribosomal particles from the mycelial cells of Microsporum canis grown in the presence and absence of cycloheximide were compared by CsCl equilibrium density gradient centrifugation. Since the buoyant densities of ribonucleoprotein complexes are dependent on the protein-RNA ratio, they reflect the composition of these particles. The native monosomes from cells grown in the presence and absence of cycloheximide had a buoyant density of 1.585 g/cc. The native 60S subunits showed a density of 1.540 g/cc from cells grown in both presence and absence of cycloheximide, while the derived subunits showed a density of 1.610 g/cc. The derived 40S subunits had a density of 1.550 g/cc while the native 40S showed a major species of density 1.535 g/cc with three other minor species ranging in densities from 1.450-1.390 g/cc. The mycelia grown in the presence of cycloheximide showed an increased proportion of native 40S subunits in the density range of 1.450-1.390 g/cc, indicating that the drug enhances factor binding to native ribosomal subunits in M. canis.  相似文献   

3.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

4.
Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but a rapidly degradable form of eIF6 fusion protein was synthesized from a repressible GAL10 promoter. Depletion of eIF6 from yeast cells resulted in a selective reduction in the level of 60S ribosomal subunits, causing a stoichiometric imbalance in 60S-to-40S subunit ratio and inhibition of the rate of in vivo protein synthesis. Further analysis indicated that eIF6 is not required for the stability of 60S ribosomal subunits. Rather, eIF6-depleted cells showed defective pre-rRNA processing, resulting in accumulation of 35S pre-rRNA precursor, formation of a 23S aberrant pre-rRNA, decreased 20S pre-rRNA levels, and accumulation of 27SB pre-rRNA. The defect in the processing of 27S pre-rRNA resulted in the reduced formation of mature 25S and 5.8S rRNAs relative to 18S rRNA, which may account for the selective deficit of 60S ribosomal subunits in these cells. Cell fractionation as well as indirect immunofluorescence studies showed that c-Myc or hemagglutinin epitope-tagged eIF6 was distributed throughout the cytoplasm and the nuclei of yeast cells.  相似文献   

5.
A cell fractionation procedure is described which allowed, by use of MOPC 21 (P3K) mouse plasmocytoma cells in culture, the separation of the cytoplasmic free and membrane-bound ribosomes in fractions devoid of mutual cross-contamination, and in which the polyribosomal structure was entirely preserved. This was achieved by sedimentation on a discontinuous sucrose density gradient in which the two ribosome populations migrate in opposite directions. A variety of controls (electron microscopy, labeling of membrane lipids, further repurification of the isolated fractions) provided no evidence of cross- contamination of these populations. However, when an excess of free 60S or 40S subunits, labeled with a different isotope, was added to the cytoplasmic extract before fractionation, the possibility of a small amount of trapping and/or adsorption of free ribosomal particles by the membrane fraction was detected, especially in the case of the 60S subunits; this could be entirely prevented by the use of sucrose gradients containing 0.15 M KC1. EDTA treatment of the membrane fraction detached almost all the 40S subunits, and about 70% of the 60S subunits. 0.5 M KC1 detached only 10% of the ribosomal particles, which consist of the native 60S subunits and the monoribosomes, i.e. the bound particles inactive in protein synthesis. Analysis in CsC1 buoyant density gradients of the free and membrane-bound polyribosomes and of their derived 60S and 40S ribosomal subunits showed that the free and membrane-bound ribosomal particles have similar densities.  相似文献   

6.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

7.
Ribosomal precursor particles are assembled in the nucleolus before export into the cytoplasm. Using a visual assay for nuclear accumulation of 60S subunits, we have isolated several conditional-lethal strains with defects in ribosomal export (rix mutants). Here we report the characterization of a mutation in an essential gene, RIX7, which encodes a novel member of the AAA ATPase superfamily. The rix7-1 temperature-sensitive allele carries a point mutation that causes defects in pre-rRNA processing, biogenesis of 60S ribosomal subunits, and their subsequent export into the cytoplasm. Rix7p, which associates with 60S ribosomal precursor particles, localizes throughout the nucleus in exponentially growing cells, but concentrates in the nucleolus in stationary phase cells. When cells resume growth upon shift to fresh medium, Rix7p-green fluorescent protein exhibits a transient perinuclear location. We propose that a nuclear AAA ATPase is required for restructuring nucleoplasmic 60S pre-ribosomal particles to make them competent for nuclear export.  相似文献   

8.
Synthesis of mature 28-S ribosomal RNA and 60-S ribosomal subunits is inhibited in baby hamster kidney (BHK) cell line ts 422E at non-permissive temperature (39 degrees C). This leads to a 66% decrease of total ribosomes per cell, a marked imbalance between the large and small ribosomal subunits in the cytoplasm and a decrease of cells per dish after prolonged culture at 30 degrees C. However, inhibition of ribosome synthesis does not affect progression of cells through the G1 period of the cell division cycle, the length of the pre-replicative period, and the rate of entry of cells into S phase. In contrast to culture at non-permissive temperature, culture of BHK ts 422E cells in the presence of 0.04 micrograms/ml actinomycin D at 33 degrees C inhibits markedly the entry into S period. It is concluded that low doses of actinomycin D exert their inhibitory effect on cell growth by preventing maturation and transport of mRNA rather than by interfering with ribosome synthesis. Microfluorometric analysis revealed only slight differences in the distribution of BHK ts 422E cells in G1, S and G2 phases of the cycle either when cultured at 33 degrees C or at 39 degrees C. When too few ribosomes per cell are produced in BHK ts 422E cells at 39 degrees C, cells do not seem to be arrested reversibly at a specific point of the cell cycle but rather to die at random.  相似文献   

9.
10.
Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.  相似文献   

11.
Antisera specific for protein synthesis initiation factors IF1, IF2, and IF3 were prepared by immunizing rabbits. When crude cell lysates are analyzed by double immunodiffusion or by immunoelectrophoresis, each antiserum forms a single precipitin line antigenically identical to its cognate factor. The antisera do not crossreact with other initiation factors or with ribosomal proteins. A radioimmune assay was developed for each initiation factor by using the specific antisera and radioactive factors prepared by reductive alkylation with [14C]formaldehyde. The assays detect as little as 10 to 30 ng of factor. Initiation factor concentrations were measured in crude Escherichin coli MRE600 extracts prepared from cells grown exponentially in a rich medium. The three initiation factors are present in approximately stoichiometric amounts and comprise about 1% of the cell protein. The molar ratio of initiation factors to ribosomes is about 0.15, which corresponds to the concentration of native ribosomal subunits.  相似文献   

12.
Native 40S ribosomal subunits and 18S ribosomal RNA from ovarian follicles of the silkmoth A. pernyi showed a lower sedimentation coefficient in comparison to ascites cells, in contrast to the KCl treated 40S ribosomal subunits where no difference was observed in both tissues. Moreover the silkmoth native 40S ribosomal subunits--in contrast to the KCl treated ones--could not reassociate with radioactive ascites cell 60S ribosomal subunits. These results, combined with the great similarities in the two dimensional electrophoretic patterns of 40S ribosomal proteins from silkmoth follicles and other mammalian cells lead to the possibility of the existence of a specific RNase associated with the 40S ribosomal subunit.  相似文献   

13.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

14.
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.  相似文献   

15.
The eukaryotic initiation factor (eIF)-5 mediates hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. The eIF-2.GDP formed under these conditions is released from the 40 S ribosomal subunit while initiator Met-tRNA(f) remains bound. The released eIF-2.GDP can participate in an eIF-2B-catalyzed GDP/GTP exchange reaction to reform the Met-tRNA(f).eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were also present in an eIF-5-catalyzed reaction, the eIF-2.GDP produced remained bound to the 60 S ribosomal subunit of the 80 S initiation complex. When such an 80 S initiation complex, containing bound eIF-2.GDP, was incubated with GTP and eIF-2B, GDP was released. However, eIF-2 still remained bound to the ribosomes and was unable to form a Met-tRNA(f)l.eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were preincubated with either free eIF-2 or with eIF-2.eIF-2B complex and then added to a reaction containing both the 40 S initiation complex and eIF-5, the eIF-2.GDP produced did not bind to the 60 S ribosomal subunits but was released from the ribosomes. Thus, the 80 S initiation complex formed under these conditions did not contain bound eIF-2.GDP. Under similar experimental conditions, preincubation of 60 S ribosomal subunits with purified eIF-2B (free of eIF-2) failed to cause release of eIF-2.GDP from the ribosomal initiation complex. These results suggest that 60 S ribosome-bound eIF-2.GDP does not act as a direct substrate for eIF-2B-mediated release of eIF-2 from ribosomes. Rather, the affinity of 60 S ribosomal subunits for either eIF-2, or the eIF-2 moiety of the eIF-2.eIF-2B complex, prevents association of 60 S ribosomal subunits with eIF-2.GDP formed in the initiation reaction. This ensures release of eIF-2 from ribosomes following hydrolysis of GTP bound to the 40 S initiation complex.  相似文献   

16.
When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were 3H-labeled in vitro and injected back into X. laevis oocytes, most 3H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, 3H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of 3H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide, a cysteine protease inhibitor, resulting in the accumulation of 3H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus.  相似文献   

17.
60S and 40S ribosomal subunits are assembled in the nucleolus and exported from the nucleus to the cytoplasm independently of each other. We show that in vertebrate cells, transport of both subunits requires the export receptor CRM1 and Ran.GTP. Export of 60S subunits is coupled with that of the nucleo- cytoplasmic shuttling protein NMD3. Human NMD3 (hNMD3) contains a CRM-1-dependent leucine-rich nuclear export signal (NES) and a complex, dispersed nuclear localization signal (NLS), the basic region of which is also required for nucleolar accumulation. When present in Xenopus oocytes, both wild-type and export-defective mutant hNMD3 proteins bind to newly made nuclear 60S pre-export particles at a late step of subunit maturation. The export-defective hNMD3, but not the wild-type protein, inhibits export of 60S subunits from oocyte nuclei. These results indicate that the NES mutant protein competes with endogenous wild-type frog NMD3 for binding to nascent 60S subunits, thereby preventing their export. We propose that NMD3 acts as an adaptor for CRM1-Ran.GTP-mediated 60S subunit export, by a mechanism that is conserved from vertebrates to yeast.  相似文献   

18.
Cell-free cytosolic extracts from the Yoshida (AH 130) rat ascites hepatoma cell line, grown in vivo, showed high ribosomal protein S6 kinase activity in vitro, as measured by transfer of 32P to exogenous 40S rat liver ribosomal subunits, in both exponential growing and stationary phase cells. A significant decrease of protein synthesis (3H-leucine incorporation into total cell protein) was found to occur in cells reaching the stationary phase of growth, suggesting that S6 phosphorylation was not tightly coupled to the rate of the intraperitoneal cell growth and of protein synthesis in these tumor cells. When the cell-free cytosolic extracts were prepared from cells exposed to amiloride, at concentrations that inhibit the Na+/H+ exchange, a decrease of S6 kinase activity was observed only in exponential growing cells, suggesting the possibility of coupling of the Na+/H+ exchange with phosphorylation of intracellular proteins in these tumor cells. Actually, stationary phase cells showed unchanged S6 kinase activity under the same conditions, possibly due to the extremely low Na+/H+ exchange activity, previously demonstrated (Cell Biol. Int. Rep., 1985, 9, 1017-1025). The present experiments support the hypothesis that the regulation of protein synthesis is not tightly coupled to phosphorylation-dephosphorylation cycles, at least of ribosomal protein S6, in cells characterized by a rather uncontrolled growth such as the Yoshida (AH 130) rat ascites hepatoma. In this connection, an elevated degree of protein phosphorylation, such as that of the ribosomal protein S6, could be a general phenomenon of neoplastic transformation.  相似文献   

19.
20.
Kap123p is a yeast beta-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123p's role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a DeltaRAI1-induced decrease in the overall biogenesis efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号