首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phenyl imidazolidin-2-one was introduced as the linker for novel HDAC inhibitors. A focused library of 20 compounds was designed and synthesized, among which eight compounds showed equivalent or higher potencies against HDAC1 as compared to vorinostat. In vitro antitumor activity assays in HCT-116, PC-3 and HL-60 cancer cells revealed six compounds with potent antitumor activities, and compound 1o showed 6- to 9-fold higher potencies compared to vorinostat. In an HCT-116 nude mice xenograft model, compound 1o displayed significant antitumor activity in both continuous and intermittent dosing schedules.  相似文献   

2.
Twenty-two quinazoline derivatives have been synthesised and examined for their anti-tumour activity against three tumour cell lines, namely human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human hepatoma cell line (HepG2). Twelve of the tested compounds have shown promising anti-tumour activity with an IC50 range of 5.0–9.7 µg/mL. Regarding the spectrum of activity, five compounds exhibited interesting anti-proliferative properties against the three tested cell lines comparable to the reference drug (dasatinib).  相似文献   

3.
Twenty-two quinazoline derivatives have been synthesised and examined for their anti-tumour activity against three tumour cell lines, namely human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human hepatoma cell line (HepG2). Twelve of the tested compounds have shown promising anti-tumour activity with an IC(50) range of 5.0-9.7 μg/mL. Regarding the spectrum of activity, five compounds exhibited interesting anti-proliferative properties against the three tested cell lines comparable to the reference drug (dasatinib).  相似文献   

4.
A series of novel water-soluble N-mustard-benzene conjugates bearing a urea linker were synthesized. The benzene moiety contains various hydrophilic side chains are linked to the meta- or para-position of the urea linker via a carboxamide or an ether linkage. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and therapeutic efficacy against human tumor xenografts in vivo. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft and significant suppression against prostate adenocarcinoma PC3 xenograft were achieved by treating with compound 9aa′ at the maximum tolerable dose with relatively low toxicity. We also demonstrate that the newly synthesized compounds are able to induce DNA cross-linking through alkaline agarose gel shift assay. A pharmacokinetic profile of the representative 9aa′ in rats was also investigated. The current studies suggest that this agent is a promising candidate for preclinical studies.  相似文献   

5.
A series of novel galloyl pyrrolidine derivatives were synthesized as potential anti-tumor agents. Their inhibiting activities on gelatinase (MMP-2 and -9) were tested with succinylated gelatin as the substrate. Structure-activity analyses demonstrate that introduction of longer and more flexible side chains at the C(4) position of the pyrrolidine ring brings higher activity against gelatinase. Free phenol hydroxyl group is more favorable than the methylated one, which confirms the important role of the phenol hydroxyl group when inhibitors interact with gelatinase. In particular, (2S,4S)-4-(3-(3,4-dimethoxyphenyl)acrylamido)-N-hydroxy-1-(3,4,5- trimethoxybenzoyl)pyrrolidine-2-carboxamide (18) stood out as the most attractive compound (IC(50) = 0.9 nM). The anti-metastasis model of mice bearing H(22) tumor cells was used to evaluate their anti-tumor activities in vivo. The assay in vivo revealed that most of these inhibitors displayed favorable inhibitory activities (inhibitory rate >35%) and no significant toxic effects were observed. The inhibition for 62.37% of 19 indicates the strategy used to design MMP inhibitors (MMPIs) of galloyl pyrrolidine derivatives as potential anti-tumor agents is promising.  相似文献   

6.
A series of 4-dimethylamine flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential multi-functional anti-Alzheimer agents. The results showed that most of the synthesized compounds exhibited high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity at the micromolar range (IC50, 1.83–33.20 μM for AChE and 0.82–11.45 μM for BChE). A Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5j with AChE, and molecular modeling study showed that 5j targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, the derivatives showed potent self-induced Aβ aggregation inhibitory activity at 20 μM with percentage from 25% to 48%. In addition, some compounds (5j5q) showed potent oxygen radical absorbance capacity (ORAC) ranging from 1.5- to 2.6-fold of the Trolox value. These compounds should be further investigated as multi-potent agents for the treatment of Alzheimer’s disease.  相似文献   

7.
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.  相似文献   

8.
As part of our ongoing efforts to identify compounds having potential utility in treating neurodegenerative and mitochondrial disorders, a series of pyridinol analogues have been prepared. The synthetic route employed for the preparation of the new analogues is different, and considerably more efficient, than that used in previously reported studies. The new route yields a pair of pyridinol regioisomers that can be readily separated and evaluated. Their ability to quench lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP synthesis is reported. The optimal side chain length was found to be 16 carbon atoms. The metabolic stability of those compounds having optimal biological activities was evaluated in vitro using bovine liver microsomes. The omission of any side chain hydroxyl group and introduction of an azetidine moiety at position 6 of the pyridinol redox core (8 and 9) increased their microsomal stability as compared to the exocyclic dimethylamino group. The favorable metabolic stability conferred by the azetidine moiety in compounds 8 and 9 makes these compounds excellent candidates for further evaluation.  相似文献   

9.
A series of oxime-functionalized nitrofuranylamides were designed, synthesized and evaluated for their in vitro anti-mycobacterial activities against MTB H37Rv and drug-resistant clinical isolates. Among them, two compounds 7a and 7b exhibited excellent activity against the three tested strains. Both of them were comparable to the first-line anti-TB agents INH and RIF against MTB H37Rv, and were far more potent than INH and RIF against MDR-TB 16833 and 16995 strains. Thus, both of them could act as leads for further optimization.  相似文献   

10.
A series of compounds with a diphenyl ether nucleus were synthesized by incorporating various amines into the diphenyl ether scaffold with an amide bond. Their antitubercular activities were evaluated against Mycobacterium tuberculosis H(37)Rv by a microdilution method, with MIC values ranging from 4 to 64μg/mL. Through structure-activity relationship studies, the two chlorine atoms at 3 and 4 positions in the phenyl ring of R(2) group were found to play a significant role in the antitubercular activity. The most potent compound 6c showed an MIC value of 4μg/mL and a good safety profile in HepG2 cell line by the MTT assay. Compound 6c was further found to be effective in a murine model of BCG infection, providing a good lead for subsequent optimization.  相似文献   

11.
A series of new hybrid benzothiazole containing pyridazinones derivatives were designed and synthesized fulfilling all the pharmacophoric requirements essential for the anticonvulsant activity. In-silico and in vitro studies revealed that some of these hybrid derivatives demonstrated admirable GABA AT inhibitory activity. An attempt has also been made to validate the results of in vitro GABA AT inhibition of the most potent compound SPS-5F (IC50 9.10 μM) through in vivo anticonvulsant screening. Compound SPS-5F administration significantly increases the whole brain GABA level, might be through the inhibition of GABA AT enzyme.  相似文献   

12.
A series of novel 1,3,4-trisubstituted pyrazole derivatives were synthesized and evaluated for their cytotoxic activity against three different cancer cell lines namely HCT116, UO-31 and HepG2. Compounds 3b, 3d, 7b and 9 showed excellent anticancer activity against all the tested cancer cell lines and had better cytotoxic activities than the reference drug, Sorafenib. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Among them, 3b and 7b were the most active compounds against HCC cells used here. Further studies on the mechanism demonstrated that 3b and 7b induced apoptosis in addition to induction of cell cycle arrest at G2/M phase in HepG2 and Huh7 cells. Consistent with these results, caspase-3 assay was done and the results revealed that the pro-apoptotic activity of the target compounds could be due to the stimulation of caspases-3. In addition, CDK1 inhibition assay was done and it was found that compounds 3b and 7b inhibited CDK1 activities with IC50 values of 2.38 and 1.52 µM, respectively. Finally, pyrazole derivatives 3b and 7b showed potent bioactivities, indicating that these compounds could be potent anticancer drugs in the future.  相似文献   

13.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

14.
Using matrine (1) as the lead compound, a series of new 14-(N-substituted-2-pyrrolemethylene) matrine and 14-(N-substituted-indolemethylene) matrine derivatives was designed and synthesized for their potential application as anticancer agents. The structure of these compounds was characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (SMMC-7721, A549 and CNE2). The results revealed that compound A6 and B21 displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42–8.05?μM, which showed better activity than the parent compound (Matrine) and positive control Cisplatin. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound A6 and B21 could significantly induce the apoptosis of SMMC-7721 and CNE2 cells in a dose-dependent manner. The cell cycle analysis also revealed that compound A6 could cause cell cycle arrest of SMMC-7721 and CNE2 cells at G2/M phase.  相似文献   

15.
A series of novel derivatives of neuropeptides with a metal-chelating moiety was synthesized and examined for various properties related to iron (Fe) chelation and neuroprotective action. All derivatives chelated Fe to form stable Fe complexes in water. Some strongly inhibited Fe-induced lipid peroxidation with an IC(50) value of about 12 microm. In PC12 cell culture, several compounds, at concentrations as low as 1 microm, attenuated serum-free stimulated cell death and improved cell survival by 20-35%. At this concentration, these analogs also protected against 6-hydroxydopamine (6-OHDA)-induced cell death, increasing cell viability by 20-30%. Electron paramagnetic resonance (EPR) studies indicated that besides being good Fe chelators, these analogs act as radical scavengers to directly scavenge hydroxyl radicals. Together, the data indicate that some of the analogs could be further developed as possible neuroprotective agents for treatment of neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases, Friedreich's atxia, amyotrophic, and lateral sclerosis where Fe misregulation has been reported.  相似文献   

16.
The enzyme glyoxalase-I (Glo-I) is an essential therapeutic target in cancer treatment. Significant efforts have been made to discover competitive inhibitors of Glo-I as potential anticancer agents. Herein, we report the synthesis of a series of diazenylbenzenesulfonamide derivatives, their in vitro evaluation against Glo-I and the resulting structure–activity relationships. Among the compounds tested, compounds 9h and 9j exhibited the highest activity with IC50 1.28 µM and 1.13 µM, respectively. Docking studies to explore the binding mode of the compounds identified key moieties that may contribute to the observed activities. The active compounds will serve as suitable leads for further chemical optimization.  相似文献   

17.
6-Chloro-2-pyrrolidino-/morpholino-/piperidino-/N-methylpiperazino-3-formyl-chromones (13-16) and 6-fluoro-2,7-di-morpholino-/piperidino-/N-methylpiperazino-3-formylchromones (17-19) have been synthesized as potential topoisomerase inhibitor anticancer agents, and evaluated, in vitro, against Ehrlich ascites carcinoma (EAC) cells, and also in vivo on EAC bearing mice. The compounds displayed promising anticancer activity under these test systems and shall serve as useful 'leads' for further design.  相似文献   

18.
A series of levoglucosenone-derived 1,2,3-triazoles and isoxazoles featuring a flexible spacer between the heteroaromatic and anhydropyranose cores have been designed and synthesized following an hetero Michael // 1,3-dipolar cycloaddition path. The use of a design of experiments approach allowed the optimization of the oxa-Michael reaction with propargyl alcohol as nucleophile, a key step for the synthesis of the target compounds. All of the compounds were tested for their anticancer activity on MDA-MB-231 cells, featuring mutant p53. The results highlighted the importance of the introduction of the flexible spacer as well as the higher activity of oxa-Michael isoxazole-derivatives. The most prominent compounds also showed anti-proliferative activities against lung and colon cancer cell lines. The compounds showed enhanced cytotoxic effects in the presence of mutant p53, determined both by endogenous mutant p53 knock down (R280K) and by reintroducing p53 R280K in cells lacking p53 expression.  相似文献   

19.
A series of novel chalcone derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of tubulin. These compounds were assayed for growth-inhibitory activity against MCF-7 and A549 cell lines in vitro. Compound 3d showed the most potent antiproliferative activity against MCF-7 and A549 cell lines with IC(50) values of 0.03 and 0.95 μg/mL and exhibited the most potent tubulin inhibitory activity with IC(50) of 1.42 μg/mL. Docking simulation was performed to insert compound 3d into the crystal structure of tubulin at colchicines binding site to determine the probable binding model. Based on the preliminary results, compound 3d with potent inhibitory activity in tumor growth may be a potential anticancer agent.  相似文献   

20.
During the past decade, it has become apparent that a set of ostensibly unrelated neurodegenerative diseases, including Parkinson's disease and Huntington's disease, shares striking molecular and cell biology commonalities. Each of the diseases involves protein misfolding and aggregation, resulting in inclusion bodies and other aggregates within cells. These aggregates often contain ubiquitin, which is the signal for proteolysis by the 26S proteasome, and chaperone proteins that are involved in the refolding of misfolded proteins. The link between the ubiquitin-proteasome system and neurodegeneration has been strengthened by the identification of disease-causing mutations in genes coding for several ubiquitin-proteasome pathway proteins in Parkinson's disease. However, the exact molecular connections between these systems and pathogenesis remain uncertain and controversial. In this article, we summarize the state of current knowledge, focusing on important unresolved questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号