首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological interaction networks have been in the scientific limelight for nearly a decade. Increasingly, the concept of network biology and its various applications are becoming more commonplace in the community. Recent years have seen networks move from pretty pictures with limited application to solid concepts that are increasingly used to understand the fundamentals of biology. They are no longer merely results of postgenome analysis projects, but are now the starting point of many of the most exciting new scientific developments. We discuss here recent progress in identifying and understanding interaction networks, new tools that use them in predictive ways in exciting areas of biology, and how they have become the focus of many efforts to study, design and tinker with biological systems, with applications in biomedicine, bioengineering, ecology and beyond.  相似文献   

2.
磁性纳米材料,由于其独特的磁学性能、小尺寸效应,被广泛应用于生物医学领域.本文总结了磁性纳米材料的化学设计与合成、表面功能化方法,及其在核磁共振成像、磁控治疗、磁热疗和生物分离等生物医学领域的应用进展.  相似文献   

3.
Designed metal-binding sites in biomolecular and bioinorganic interactions   总被引:1,自引:0,他引:1  
The design of metal-binding functionality in proteins is expanding into many different areas with a wide range of practical and research applications. Here we review several developing areas of metal-related protein design, including the use of metals to induce protein-protein interactions or facilitate the assembly of extended nanostructures; the design of metallopeptides that bind metal and other inorganic surfaces, an area with potential in diverse applications ranging from nanoelectronics and photonics to biotechnology and biomedicine; and, the creation of sensitive and selective metal sensors for use both in vivo and in vitro.  相似文献   

4.
Over the years, polymers have attracted a great deal of interest because they offer a unique platform for the development of materials in fields as diverse as biomedicine and packaging. Many of these purposes use polymers that had been developed for totally different applications. Recently, however, chemical tailoring and molecular and supramolecular control of the chemistry and, thus, the physical and biological response have become a key interest of many researchers. In particular, systems that operate in aqueous media have become an intensely researched field. This is mostly because many devices must be biocompatible, which implies that they have to function in aqueous solutions. Over the past few years, new approaches for mimicking cell surfaces, for generating biocompatible and bioactive drug delivery systems, and for directed targeting have been developed. One recent development is polymeric systems with an enhanced biofunctionality, such as amphiphilic block copolymers that can act as mimetics for biological membranes. Because there are virtually no limits to combinations of monomers, biological and synthetic building blocks, ligands, receptors, and other proteins, polymer hybrid materials show a great promise for applications in biomedicine and biotechnology.  相似文献   

5.
Receptors for carbohydrates of the lectin type are multisubunit and multivalent proteins with many important biological functions. In order to put their unique biological activities into use in biotechnology and biomedicine, efficient carbohydrate ligands of the glycodendrimer type have been constructed. Although these compounds may be branched into the multiple generations, structures bearing four to 16 terminal carbohydrate substituents have proved to be efficient ligands in most lectin systems. These compounds are rapidly finding important practical applications as antitumor and antiinfective compounds.  相似文献   

6.
Curdlan is a water-insoluble β-(1,3)-glucan produced by Agrobacterium species under nitrogen-limited condition. Its heat-induced gelling properties render curdlan to be very useful in the food industry initially. Recent advances in the understanding of the role curdlan plays in both innate and adaptive immunity lead to its growing applications in biomedicine. Our review focuses on the recent advances on curdlan biosynthesis and the improvements of curdlan fermentation production both from our laboratory and many others as well as the latest advances on the new applications of curdlan and its derivatives particularly in their immunological functions in biomedicine.  相似文献   

7.
The zebrafish (Danio rerio) has many features that make it an ideal model for the study of developmental biology. It is small and easy to contain, it has transparent embryos, it is easy to breed and its early development is well characterized; these same characteristics have also made it an ideal vertebrate model in the areas of biomedicine and biotechnology. In aquaculture, the need for a well-characterized fish model has been satisfied by the zebrafish owing to the availability of functional genomics and molecular biology data to facilitate studies of growth, reproduction, meat quality and disease biology, with the corresponding development of vaccines and therapies. Zebrafish are also increasingly used in toxicogenomics to analyze the effects of toxins and pollutants in the environment, and for creating biomonitors that emit alarm signals when a toxic compound is detected. As detailed in this review, the zebrafish is a versatile and well-characterized model with applications in many fields of study.  相似文献   

8.
Nanoparticles (NPs) have various applications in biomedicine and drug delivery carriers and also are widely used in cosmetics. However, the preparation of biocompatible and non-toxic nanomaterials is a very important issue as most of the starting materials are synthesized using toxic chemical reagents. This review introduces the preparation of biocompatible NPs in a range of their concentrations using phytochemicals for biomedicine and biotechnology. Phytochemicals are natural products that are extracted from plants, vegetables, and fruits. Phytochemicals serve as reducing agents and stabilizers during NP synthesis to convert metal ions to metal NPs in water. Possible applications of such nanomaterials in biomedical sciences are also described in this review.  相似文献   

9.
10.
The interest in microbial biosurfactants has steadily increased during the past decade. In addition to the classical application as emulsifiers of hydrocarbons, they can be used in environmental protection, crude-oil recovery, food-processing industries and in various fields of biomedicine. Biosurfactants have several advantages over chemical surfactants including lower toxicity and higher biodegradability, and are likely to become molecules of the future in areas such as biomedicine and therapeutics. Here, we discuss the role and applications of biosurfactants (mainly glycolipids and lipopeptides) focusing on medicinal and therapeutic perspectives.  相似文献   

11.
《New biotechnology》2015,32(6):665-672
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles.  相似文献   

12.
《朊病毒》2013,7(5-6):266-272
ABSTRACT

Protein misfolding and aggregation into highly ordered fibrillar structures have been traditionally associated with pathological processes. Nevertheless, nature has taken advantage of the particular properties of amyloids for functional purposes, like in the protection of organisms against environmental changing conditions. Over the last decades, these fibrillar structures have inspired the design of new nanomaterials with intriguing applications in biomedicine and nanotechnology such as tissue engineering, drug delivery, adhesive materials, biodegradable nanocomposites, nanowires or biosensors. Prion and prion-like proteins, which are considered a subclass of amyloids, are becoming ideal candidates for the design of new and tunable nanomaterials. In this review, we discuss the particular properties of this kind of proteins, and the current advances on the design of new materials based on prion sequences.  相似文献   

13.
脱细胞基质(decellularized extracellular matrix, dECM)旨在去除引起免疫排斥的细胞,保留原组织结构和成分。由于其具有与原组织器官相似的结构和成分,在组织工程和生物医学的应用上受到广泛关注,已成为一种很有前景的生物医学材料。通过适当的脱细胞方法,dECM很容易能够从组织器官中获得。文中总结了脱细胞的方法及最新研究进展,同时对脱细胞后支架灭菌、交联和保存的方式进行综述,概括了不同组织器官获得的脱细胞支架的最新应用及进展。最后对脱细胞支架目前面临的问题和挑战进行分析,并展望了未来的发展趋势。  相似文献   

14.
Text mining and ontologies in biomedicine: making sense of raw text   总被引:1,自引:0,他引:1  
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to locate, retrieve and manage the reported information without text mining, which aims to automatically distill information, extract facts, discover implicit links and generate hypotheses relevant to user needs. Ontologies, as conceptual models, provide the necessary framework for semantic representation of textual information. The principal link between text and an ontology is terminology, which maps terms to domain-specific concepts. This paper summarises different approaches in which ontologies have been used for text-mining applications in biomedicine.  相似文献   

15.
Pigs share many anatomical and physiological features with humans, offering a unique and viable model for biomedical research. Tandem mass tag method followed by mass spectrometry analysis was utilized to identify peptides (47,405), proteins (14,701), and protein groups (7634) in ovaries of 8‐ and 32‐week‐old postnatal Banna miniature pigs. After annotation and analysis by Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology, the proteins were identified as being involved in hormone metabolic pathways and maintenance, proliferation, and regulation of stem cells. In addition, we found 638 differentially expressed proteins between ovaries of 8‐ and 32‐week‐old postnatal Banna miniature pigs. We used Interactive Pathway Explorer to produce an overview of pig ovarian proteomics. Compared with those of the 8‐week‐old group, the proteins enriched in metabolism of steroid hormones, metabolism of lipids, and energy metabolism pathway were upregulated in the 32‐week‐old group, indicating physiological characteristics of sexual maturity. These findings have implications in applications of biomedicine.

Significance of the study

Pigs share many anatomical and physiological features with humans, offering a unique and viable model for biomedical research. In this study, we used tandem mass tag quantitative proteomics to describe, for the first time, protein expression patterns of postnatal pig ovaries. Proteins involved in hormone metabolic pathways and maintenance, proliferation, and regulation of stem cells were identified. With further analysis by Interactive Pathway Explorer, proteins enriched in metabolism of steroid hormones, metabolism of lipids, and energy metabolism pathway were upregulated in the 32‐week‐old group, indicating physiological characteristics of sexual maturity. These findings have implications in applications of biomedicine.  相似文献   

16.
自2007年发现四氧化三铁纳米材料具有类似辣根过氧化物酶的催化特性以来,纳米酶研究领域迅速崛起.不同形貌、尺度和材料各异的纳米酶相继出现,同时其催化机制逐渐被认识.由于纳米酶具有催化效率高、稳定、经济和规模化制备的特点,它在医学、化工、食品、农业和环境等领域的应用研究便应运而生.纳米酶的发现,不仅推动了纳米科技的基础研究,还拓展了纳米材料的应用.本文将介绍纳米酶研究领域的最新研究进展.  相似文献   

17.
Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.  相似文献   

18.
Chitin deacetylases: new, versatile tools in biotechnology   总被引:11,自引:0,他引:11  
Chitin deacetylases have been identified in several fungi and insects. They catalyse the hydrolysis of N-acetamido bonds of chitin, converting it to chitosan. Chitosans, which are produced by a harsh thermochemical procedure, have several applications in areas such as biomedicine, food ingredients, cosmetics and pharmaceuticals. The use of chitin deacetylases for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable process, resulting in the production of novel, well-defined chitosan oligomers and polymers.  相似文献   

19.
二次谐波显微成像技术   总被引:1,自引:0,他引:1  
二次谐波非线性显微成像技术是近年发展起来的一种新型光学成像方法,已广泛应用于生物医学的各个领域。介绍了光学二次谐波产生的原理、成像装置及其技术发展,描述了二次谐波的成像特点和它与双光子荧光成像的异同,并对其在生物医学上的应用及发展前景做出展望。  相似文献   

20.
Inhibitors of carbonic anhydrase (CA) have been carried out in many therapeutic applications, especially antiglaucoma activity. In this study, we investigated some uracil derivatives (412) to inhibit human CA I (hCA I) and II (hCA II) isoenzymes. The KI values of the compounds 412 are in the range of 0.085–428?µM for hCA I and of 0.1715–645?µM against hCA II, respectively. It is concluded from the kinetic investigations, all compounds used in the study act as competitive inhibitors with substrate, 4-NPA. Uracil derivatives are emerging agents for the inhibiton of carbonic anhydrase which could be used in biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号