首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Five fractions with lignin peroxidase activity were isolated by FPLC-Mono Q from a Streptomyces viridosporus culture. F4 and F5 showed the highest specific activity and degree of protein homogeneity by chromatofocusing, IEF- and gradient-PAGE. The individual analysis of F4 and F5 by FPLC-Superdex 75, showed MW that were multiples to each other (68,000; 23,000; 12,000), although by SDS PAGE a sole MW of 13,500 was obtained, indicating a monomer based structure. The amino-acid composition of F5 showed absence of sulfur amino acids.  相似文献   

2.
Peroxidase-deficient mutants of the lignin-degrading bacterium Streptomyces viridosporus T7A were screened for their production of acid-precipitable polymeric lignin, extracellular peroxidases and esterases, and immunoreactivities against a polyclonal antibody produced against electrophoretically purified peroxidase isoform P3 of wild-type S. viridosporus. The mutants showed diminished abilities to solubilize lignin and produce acid-precipitable polymeric lignin. Their peroxidase activities were decreased, and their esterase production patterns were altered. Western immunoblots demonstrated that the mutants produced proteins immunologically reactive with the antibody, but with different mobilities from those of wild-type proteins. These findings confirm a direct role for peroxidases in lignin solubilization. They also indicate a possible role for esterases.  相似文献   

3.
Summary Numerous single-ring, aromatic, phenolic and non-phenolic compounds were tested as substrates of Streptomyces viridosporus T7A extracellular lignin peroxidase. Oxidations were monitored by spectroscopy, with and without 4-aminoantipyrine (4-AAP) as a color-forming reagent. The oxidation of phenols containing one or no carbon groups in the para position resulted in coupling with 4-AAP to form a red color. Thin layer chromatography and mass spectroscopy showed that the oxidation of vanillic acid (4-hydroxy-3-methoxybenzoic acid) and syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) resulted in a direct coupling between 4-AAP and the phenol ring to form a quinone structure. In the reaction with vanillyl acetone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and 4-AAP, 4-AAP coupled to Á-carbon of vanillyl acetone. As shown by UV-visible spectroscopy, S. viridosporus T7A peroxidase oxidized phenolic compounds, but was unable to oxidize non-phenolic ones.Paper no. 91 517 of the Idaho Agricultural Experiment Station Correspondence to: D. L. Crawford  相似文献   

4.
Peroxidase-deficient mutants of the lignin-degrading bacterium Streptomyces viridosporus T7A were screened for their production of acid-precipitable polymeric lignin, extracellular peroxidases and esterases, and immunoreactivities against a polyclonal antibody produced against electrophoretically purified peroxidase isoform P3 of wild-type S. viridosporus. The mutants showed diminished abilities to solubilize lignin and produce acid-precipitable polymeric lignin. Their peroxidase activities were decreased, and their esterase production patterns were altered. Western immunoblots demonstrated that the mutants produced proteins immunologically reactive with the antibody, but with different mobilities from those of wild-type proteins. These findings confirm a direct role for peroxidases in lignin solubilization. They also indicate a possible role for esterases.  相似文献   

5.
Previously we reported production of an extracellular lignin-inducible peroxidase by Streptomyces viridosporus (M. Ramachandra, D.L. Crawford, and A.L. Pometto III, Appl. Environ. Microbiol. 53:2754-2760, 1987). This peroxidase was shown to oxidize 3,4-dihydroxyphenylalanine, 2,4-dichlorophenol, homoprotocatechuic acid, caffeic acid, and N,N,N',N'-tetramethylphenylenediamine and was found in higher than normal levels in strains enhanced for lignocellulose degradation. In the present study, we used a pure extracellular enzyme preparation with high peroxidase isoform P3 activity to oxidize lignin substructure model compounds of both the 1,2-diaryl propane and arylglycerol-beta-aryl ether types and containing C alpha-carbonyl and C alpha-hydroxyl groups. The reactions were monitored by gas chromatography-mass spectrometry and high-pressure liquid chromatography techniques. In the presence, but not the absence, of hydrogen peroxide, the enzyme preparation catalyzed C alpha-C beta bond cleavage in the side chains of the diaryl ethers 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (I) and 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propan-1-one (II) and the diaryl ethane 1-(4-methoxyphenyl)-2-(phenyl)ethan-1-one (III). Rapid hydrogen peroxide consumption was observed when the enzyme preparation was added to either milled corn lignin or lignocellulose. Additional characterizations showed that this enzyme is a heme protein (Soret band, 408 nm) and a major component of the ligninolytic system of S. viridosporus T7A. This is the first report of a lignin peroxidase in a bacterium. We have designated this new lignin peroxidase as ALiP-P3.  相似文献   

6.
Previously we reported production of an extracellular lignin-inducible peroxidase by Streptomyces viridosporus (M. Ramachandra, D.L. Crawford, and A.L. Pometto III, Appl. Environ. Microbiol. 53:2754-2760, 1987). This peroxidase was shown to oxidize 3,4-dihydroxyphenylalanine, 2,4-dichlorophenol, homoprotocatechuic acid, caffeic acid, and N,N,N',N'-tetramethylphenylenediamine and was found in higher than normal levels in strains enhanced for lignocellulose degradation. In the present study, we used a pure extracellular enzyme preparation with high peroxidase isoform P3 activity to oxidize lignin substructure model compounds of both the 1,2-diaryl propane and arylglycerol-beta-aryl ether types and containing C alpha-carbonyl and C alpha-hydroxyl groups. The reactions were monitored by gas chromatography-mass spectrometry and high-pressure liquid chromatography techniques. In the presence, but not the absence, of hydrogen peroxide, the enzyme preparation catalyzed C alpha-C beta bond cleavage in the side chains of the diaryl ethers 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (I) and 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propan-1-one (II) and the diaryl ethane 1-(4-methoxyphenyl)-2-(phenyl)ethan-1-one (III). Rapid hydrogen peroxide consumption was observed when the enzyme preparation was added to either milled corn lignin or lignocellulose. Additional characterizations showed that this enzyme is a heme protein (Soret band, 408 nm) and a major component of the ligninolytic system of S. viridosporus T7A. This is the first report of a lignin peroxidase in a bacterium. We have designated this new lignin peroxidase as ALiP-P3.  相似文献   

7.
8.
A lignin peroxidase gene was cloned from Streptomyces viridosporus T7A into Streptomyces lividans TK64 in plasmid pIJ702. BglII-digested genomic DNA (4-10 kb) of S. viridosporus was shotgun-cloned into S. lividans after insertion into the melanin (mel+) gene of pIJ702. Transformants expressing pIJ702 with insert DNA were selected based upon the appearance of thiostrepton resistant (tsrr)/mel-colonies on regeneration medium. Lignin peroxidase-expressing clones were isolated from this population by screening of transformants on a tsr-poly B-411 dye agar medium. In the presence of H2O2 excreted by S. lividans, colonies of lignin peroxidase-expressing clones decolorized the dye. Among 1000 transformants screened, 2 dye-decolorizing clones were found. One, pIJ702/TK64.1 (TK64.1), was further characterized. TK64.1 expressed significant extracellular 2,4-dichlorophenol (2.4-DCP) peroxidase activity (= assay for S. viridosporus lignin peroxidase). Under the cultural conditions employed, plasmidless S. lividans TK64 had a low background level of 2.4-DCP oxidizing activity. TK64.1 excreted an extracellular peroxidase not observed in S. lividans TK64, but similar to S. viridosporus lignin peroxidase ALip-P3, as shown by activity stain assays on nondenaturing polyacrylamide gels. The gene was located on a 4 kb fragment of S. viridosporus genomic DNA. When peroxidase-encoding plasmid, pIJ702.LP, was purified and used to transform three different S. lividans strains (TK64, TK23, TK24), all transformants tested decolorized poly B-411. When grown on lignocellulose in solid state processes, genetically engineered S. lividans TK64.1 degraded the lignocellulose slightly better than did S. lividans TK64. This is the first report of the cloning of a bacterial gene coding for a lignin-degrading enzyme.  相似文献   

9.
The ability of the ligninolytic actinomycete Streptomyces viridosporus T7A to degrade selected lignin model compounds, both in the presence and in the absence of lignocellulose, was examined. Compounds studied included benzyl alcohols and aldehydes, plus dimers possessing intermonomeric linkages, which are characteristic of the lignin macromolecule. Oxidation of veratryl alcohol to the corresponding acid was significant only under ligninolytic growth conditions, i.e., in medium containing lignocellulose, while other benzyl alcohols and aldehydes were readily oxidized in its absence. S. viridosporus T7A reduces carbonylic groups of 1,2-diarylethane, but not of 1,2-diarylpropane structures, under both ligninolytic and non-ligninolytic culture conditions. Cleavage of 1,2-diarylpropane (β-1), arylglycerol-β-arylether(β-0-4) and biphenyl structures by this strain could not be detected under either metabolic conditions.  相似文献   

10.
The lignocellulose-degrading actinomycete Streptomyces viridosporus T7A produced an extracellular esterase when grown in a mineral salts-yeast extract medium. Extracellular esterase activity was first detected during the late stationary phase and typically followed the appearance of intracellular activity. When the organism was grown in lignocellulose-supplemented medium, esterase activity was not increased, but lignocellulose-esterified p-coumaric acid and vanillic acid were released into the medium. Polyacrylamide gels showed that several extracellular esterases differing in substrate specificity were produced. Ultrafiltration was used to concentrate the esterase prior to purification. Activity was recovered mostly in the molecular weight fraction between 10,000 and 100,000. Concentrated esterase was further purified by DEAE-Sepharose anion-exchange chromatography to a specific activity 11.82 times greater than that in the original supernatant. There were seven detectable esterase active proteins in the partially purified enzyme solution. Three were similar esterases that may be isoenzymes. The partially purified esterase had a pH optimum for activity of 9.0, a temperature optimum of 45 to 50°C, and a Km and Vmax of 0.030 mM and 0.097 μmol/min per ml, respectively, when p-nitrophenyl butyrate was the substrate. The enzyme was unstable above 40°C but retained activity when stored at 4 or −20°C. It lost some activity (20%) when lyophilized. Substrate specificity assays showed that it hydrolyzed ester linkages of p-nitrophenyl butyrate, α-naphthyl acetate, α-naphthyl butyrate, and lignocellulose. Vanillic and p-coumaric acids were identified as products released from lignocellulose. The enzyme is thought to be a component of the lignocellulose-degrading enzyme system of S. viridosporus.  相似文献   

11.
The ability of a mixed natural microbial population, collected in an aerated lagoon treating Fluff pulp effluent and Streptomyces viridosporus strain T7A, to degrade lignosulphonate was evaluated. S. viridosporus growing in a mineral medium containing glycerol (7 g/l) and lignosulphonate (1 g/l) allowed 20% of lignosulphonate to be degraded after 18 days of incubation. A culture of the mixed population on culture medium after S. viridosporus growth was unable to degrade lignosulphonate products. Moreover, antagonism between S. viridosporus and the mixed population or between S. viridosporus and the isolated strains from this population was observed. The enhancement of lignosulphonate biodegradation by naturally occurring microorganisms in association with S. viridosporus (bioaugmentation strategy) seems to be difficult.  相似文献   

12.
Lactate oxidase was purified from Aerococcus viridans (A. viridans) by dye affinity chromatography and FPLC ion exchange chromatography. The lactate oxidase could be purified by comparatively simple procedures, the purification achieved from a crude extract of A. viridans was 41-fold with a specific activity of 143 units/(mg of protein). The purified enzyme was a L-lactate oxidase, which catalyses the conversion of L-lactate in the presence of molecular oxygen to pyruvate and H(2)O(2). This purified lactate oxidase showed an apparent molecular mass of 48,200 in SDS-PAGE and the native molecular weight, as estimated by FPLC gel filtration, was 187,300. This molecular weight indicates that lactate oxidase exists in tetrameric form after gel filtration. To differing degrees, all the triazine dyes tested were inhibitors of lactate oxidase, solutions of free triazine dyes showing an inhibition mechanism which was both time- and pH-dependent.  相似文献   

13.
The biodegradability of plant material derived from wheat grown under different concentrations of atmospheric CO2 was investigated using the lignocarbohydrate solubilising actinomycete, Streptomyces viridosporus. Growth of S. viridosporus and solubilisation of lignocarbohydrate were highest when wheat grown at ambient CO2 concentrations (350 ppm) was used as C-source. Growth of S. viridosporus and solubilisation were reduced when the plant material was derived from wheat grown at 645 ppm CO2. The results suggest that modifications in plant structure occur when wheat is grown under conditions of elevated atmospheric CO2 which make it more resistant to microbial digestion.  相似文献   

14.
A new and simple method for the purification of extracellular levansucrase from Zymomonas mobilis from highly viscous fermentation broth was developed. After incubation of the fermentation broth with a fructose-polymer cleaving enzyme preparation (Fructozyme, Novozymes, DK) for 48 h, levansucrase precipitated as aggregates and was redissolved in a 3 M urea solution. By ongoing size-exclusion chromatography on Sephacryl S-300 the final levansucrase preparation was purified 100-fold and exhibited a specific activity of 25-35 U/mg(protein). The levansucrase was stable in 3 M urea solution for at least four months without inactivation. To maximize the enzyme yield the dynamic changes of extracellular levansucrase activity during fermentation were investigated. The highest levansucrase activity was observed during the logarithmic phase of growth (15-19 h of fermentation).  相似文献   

15.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

16.
Alternaria brassicicola produced higher quantities (3.2 U/ml) of an inducible extracellular lipase (EC 3.1.1.3) in shaken synthetic medium supplemented with 20 mM methyloleate. After purification, the M r of the lipase was determined as 80 kDa by SDS-PAGE and estimated at 85 kDa using gel filtration, which suggest that the enzyme may be a monomer. The optimum pH and temperature for activity of the enzyme were 9.0 and 25ºC, respectively. Using umbelliferone esters, the lipase was shown highly specific towards a synthetic substrate with long-chain unsaturated fatty acid.  相似文献   

17.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

18.
19.
Summary The relationships between growth, medium pH, assimilation of glucose and amino acids, presence or absence of lignocellulose in the medium, lignin solubilization, and the appearance of extracellular peroxidase activity were compared for two lignin-solubilizing actinomycetes, Streptomyces chromofuscus A2 and S. viridosporus T7A. In a mineral salt medium containing yeast extract and three amino acids S. chromofuscus A2 grew faster than S. viridosporus T7A. When d-glucose was added to this medium, it was used in preference to the amino acids, the assimilation of which was delayed. Extracellular peroxidase activity peaked during the stationary phase, and glucose supplementation delayed peroxidase production. The eventual peak in peroxidase activity was higher in glucose-containing medium than in medium without glucose. Supplementation of the medium with lignocellulose did not affect either the level or time of appearance of extracellular peroxidase. However, lignin solubilization in lignocellulose-supplemented medium correlated positively with peroxidase activity: both increased after the cells entered the stationary phase. Supplementation of lignocellulose-containing medium with glucose delayed peroxidase production and lignin solubilization until the glucose had been assimilated. With S. viridosporus T7A, addition of d-glucose to the standard medium affected amino acid assimilation differently from S. chromofuscus A2. Glucose was consumed concomitantly with the amino acids. In the medium supplemented with lignocellulose, peroxidase activity and lignin solubilization correlated as they did for S. chromofuscus A2. A correlation of unknown significance was observed between the peroxidase activities of both strains and increasing medium pH. S. chromofuscus A2 produced more peroxidase and solubilized more lignin from lignocellulose than did S. viridosporus T7A. Overall, these findings show that extracellular peroxidases of both Streptomyces ssp. appear extracellularly primarily after cells cease growing and nutrients have been depleted from the medium. Also, increasing extracellular peroxidase activity and rates of lignin solubilization in both organisms are correlated and subject to glucose repression. These results point to the involvement of stationary-phase active peroxidases in the Streptomyces-catalyzed solubilization of lignin.Paper No. 90518 of the Idaho Agricultural Experiment Station Offprint requests to: D. L. Crawford  相似文献   

20.
A conjugable analogue of the benzodiazepine 4' '-chlorodiazepam (Ro5-4864), C6Ro5-4864 was synthesized to probe the binding sites of translocator protein (18 kDa; TSPO), previously known as the peripheral benzodiazepine receptor for molecular imaging. The amino group in this analogue allows universal conjugation to signaling molecules. Lissamine-C6Ro5-4864, synthesized from C6Ro5-4864 and a lissamine fluorescence dye, was investigated in this study. This imaging agent exhibited micromolar binding affinity (Ki = 2.6 microM) to TSPO and was successfully imaged in TSPO rich glioma and breast cancer cell lines. These findings suggest that C6Ro5-4864 may provide opportunities in imaging disease states where TSPO levels are affected, such as cancer and neurologic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号