首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The one-domain voltage-gated sodium channel of Bacillus halodurans (NaChBac) is composed of six transmembrane segments (S1–S6) comprising a pore-forming region flanked by segments S5 and S6 and a voltage-sensing element composed of segment S4. To investigate the role of the S4 segment in NaChBac channel activation, we used the cysteine mutagenesis approach where the positive charges of single and multiple arginine (R) residues of the S4 segment were replaced by the neutrally charged amino acid cysteine (C). To determine whether it was the arginine residue itself or its positive charge that was involved in channel activation, arginine to lysine (R to K) mutations were constructed. Wild-type (WT) and mutant NaChBac channels were expressed in tsA201 cells and Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. The current/voltage (I-V) and conductance/voltage (G-V) relationships steady-state inactivation (h ) and recovery from inactivation were evaluated to determine the effects of the S4 mutations on the biophysical properties of the NaChBac channel. R to C on the S4 segment resulted in a slowing of both activation and inactivation kinetics. Charge neutralization of arginine residues mostly resulted in a shift toward more positive potentials of G-V and h curves. The G-V curve shifts were associated with a decrease in slope, which may reflect a decrease in the gating charge involved in channel activation. Single neutralization of R114, R117, or R120 by C resulted in a very slow recovery from inactivation. Double neutralization of R111 and R129 confirmed the role of R111 in activation and suggested that R129 is most probably not part of the voltage sensor. Most of the R to K mutants retained WT-like current kinetics but exhibited an intermediate G-V curve, a steady-state inactivation shifted to more hyperpolarized potentials, and intermediate time constants of recovery from inactivation. This indicates that R, at several positions, plays an important role in channel activation. The data are consistent with the notion that the S4 is most probably the voltage sensor of the NaChBac channel and that both positive charges and the nature of the arginine residues are essential for channel activation.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

2.
The NaChBac prokaryotic sodium channel appears to be a descendent of an evolutionary link between voltage-gated KV and CaV channels. Like KV channels, four identical six-transmembrane subunits comprise the NaChBac channel, but its selectivity filter possesses a signature sequence of eukaryotic CaV channels. We developed structural models of the NaChBac channel in closed and open conformations, using K+-channel crystal structures as initial templates. Our models were also consistent with numerous experimental results and modeling criteria. This study concerns the pore domain. The major differences between our models and K+ crystal structures involve the latter portion of the selectivity filter and the bend region in S6 of the open conformation. These NaChBac models may serve as a stepping stone between K+ channels of known structure and NaV, CaV, and TRP channels of unknown structure.  相似文献   

3.
In this review we summarize mutagenesis work on the structure–function relationship of transmembrane segment M1 in the Na+,K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase. The original hypothesis that charged residues in the N-terminal part of M1 interact with the transported cations can be rejected. On the other hand hydrophobic residues in the middle part of M1 turned out to play crucial roles in Ca2+ interaction/occlusion in Ca2+-ATPase and K+ interaction/occlusion in Na+,K+-ATPase. Leu65 of the Ca2+-ATPase and Leu99 of the Na+,K+-ATPase, located at homologous positions in M1, function as gate-locking residues that restrict the mobility of the side chain of the cation binding/gating residue of transmembrane segment M4, Glu309/Glu329. A pivot formed between a pair of a glycine and a bulky residue in M1 and M3 seems critical to the opening of the extracytoplasmic gate in both the Ca2+-ATPase and the Na+,K+-ATPase. All numbering of Na+,K+-ATPase amino acid residues in this article refers to the sequence of the rat α1-isoform.  相似文献   

4.
Abstract

Na+/H+ antiporters play a primary role in Na+/H+ homeostasis in cells and many organelles and have long been drug targets. The X-ray structure of NhaA, the main antiporter of Escherichia coli, provided structural insights into the antiport mechanism and its pH regulation and revealed a novel fold; six of the 12 TMs (Trans membrane segments) are organized in two topologically inverted repeats, each with one TM interrupted by an extended chain creating a unique electrostatic environment in the middle of the membrane at the cation binding site. Remarkably, inverted repeats containing interrupted helices with similar functional implications have since been observed in structures of other bacterial secondary transporters with almost no sequence homology. Finally, the structure reveals that NhaA is organized into two functional regions: a ‘pH sensor' – a cluster of amino acyl side chains that are involved in pH regulation; and a catalytic region that is 9 Å removed from the pH sensor. Alternative accessibility of the binding site to either side of the membrane, i.e., functional-dynamics, is the essence of secondary transport mechanism. Because NhaA is tightly pH regulated, structures of the pH-activated and ligand-activated NhaA conformations are needed to identify its functional-dynamics. However, as these are static snapshots of a dynamic protein, the dynamics of the protein both in vitro and in situ in the membrane are also required as reviewed here in detail. The results reveal two different conformational changes characterizing NhaA: One is pH-induced for NhaA activation; the other is ligand-induced for antiport activity.  相似文献   

5.
The kidney plays a crucial role in the regulation of water and ion balances in both freshwater and seawater fishes. However, the complicated structures of the kidney hamper comprehensive understanding of renal functions. In this study, to investigate the structure of sterically disposed renal tubules, we examined spatial, cellular, and intracellular localization of Na+/K+-ATPase in the kidney of the Japanese eel. The renal tubule was composed of the first (PT-I) and second (PT-II) segments of the proximal tubule and the distal tubule (DT), followed by the collecting ducts (CDs). Light microscopic immunocytochemistry detected Na+/K+-ATPase along the renal tubules and CD; however, the subcellular distribution of the Na+/K+-ATPase immunoreaction varied among different segments. Electron microscopic immunocytochemistry further revealed that Na+/K+-ATPase was distributed on the basal infoldings of PT-I, PT-II, and DT cells. Three-dimensional analyses showed that the renal tubules meandered in a random pattern through lymphoid tissues, and then merged into the CD, which was aligned linearly. Among the different segments, the DT and CD cells showed more-intense Na+/K+-ATPase immunoreaction in freshwater eel than in seawater-acclimated eel, confirming that the DT and CD segments are important in freshwater adaptation, or hyperosmoregulation. (J Histochem Cytochem 58:707–719, 2010)  相似文献   

6.
Replacement of individual P-loop residues with cysteines in rat skeletal muscle Na+ channels (SkM1) caused an increased sensitivity to current blockade by Cd2+ thus allowing detection of residues lining the pore. Simultaneous replacement of two residues in distinct P-loops created channels with enhanced and reduced sensitivity to Cd2+ block relative to the individual single mutants, suggesting coordinated Cd2+ binding and cross-linking by the inserted sulfhydryl pairs. Double-mutant channels with reduced sensitivity to Cd2+ block showed enhanced sensitivity after the application of sulfhydryl reducing agents. These results allow identification of residue pairs capable of approaching one another to within less than 3.5 Å. We often observed that multiple consecutive adjacent residues in one P-loop could coordinately bind Cd2+ with a single residue in another P-loop. These results suggest that, on the time-scale of Cd2+ binding to mutant Na+ channels, P-loops show a high degree of flexibility.  相似文献   

7.
Models of the transmembrane region of the NaChBac channel were developed in two open/inactivated and several closed conformations. Homology models of NaChBac were developed using crystal structures of Kv1.2 and a Kv1.2/2.1 chimera as templates for open conformations, and MlotiK and KcsA channels as templates for closed conformations. Multiple molecular-dynamic simulations were performed to refine and evaluate these models. A striking difference between the S4 structures of the Kv1.2-like open models and MlotiK-like closed models is the secondary structure. In the open model, the first part of S4 forms an α-helix, and the last part forms a 310 helix, whereas in the closed model, the first part of S4 forms a 310 helix, and the last part forms an α-helix. A conformational change that involves this type of transition in secondary structure should be voltage-dependent. However, this transition alone is not sufficient to account for the large gating charge movement reported for NaChBac channels and for experimental results in other voltage-gated channels. To increase the magnitude of the motion of S4, we developed another model of an open/inactivated conformation, in which S4 is displaced farther outward, and a number of closed models in which S4 is displaced farther inward. A helical screw motion for the α-helical part of S4 and a simple axial translation for the 310 portion were used to develop models of these additional conformations. In our models, four positively charged residues of S4 moved outwardly during activation, across a transition barrier formed by highly conserved hydrophobic residues on S1, S2, and S3. The S4 movement was coupled to an opening of the activation gate formed by S6 through interactions with the segment linking S4 to S5. Consistencies of our models with experimental studies of NaChBac and Kv channels are discussed.  相似文献   

8.
Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

9.
Summary Different amino acid residues in cardiac sarcolemmal vesicles were modified by incubation with various chemical reagents. The effects of these modifications on sarcolemmal Na+–Ca2+ exchange were examined. Dithiothreitol, an agent that maintains sulfur-containing residues in a reduced state, caused a time- and concentration-dependent decrease in Na+–Ca2+ exchange. The treatment with dithiothreitol resulted in a decrease inV max values but did not alter theK m for Ca2+ for the Na2+–Ca2+ exchange reaction. If Na+ replaced K+ as the ion present during the modification of sarcolemmal membranes with dithiothreitol, there was substantially less of an inhibitor effect on Na+–Ca2+ exchange. Similar results were obtained with reduced glutathione, a reagent that also maintains sulfur-containing residues in a reduced state. Two sulfhydryl modifying reagents, methylmethanethiosulfonate and N-ethylmaleimide, were capable of altering Na+–Ca2+ exchange, and the type of ion present during modification significantly affected the extent of this alteration. Almost all of the chemical reagents investigated that modified other amino acid resides (carboxyl, lysyl, histidyl, tyrosyl, tryptophanyl, arginyl and hydroxyl) had the capacity to alter Na+–Ca2+ exchange after preincubation with the sarcolemmal membrane vesicles. However, the sulfur residue-modifying reagents were the only compounds to exhibit significant differences in their action on Na+–Ca2+ exchange, depending on whether Na+ or K+ was present in the preincubation modification medium. The tryptophan modifier, N-bromosuccinimide, was the sole reagent that elicited a substantial increase in membrane permeability. The evidence is consistent with the hypothesis that sulfurcontaining residues interact with a Na+-binding site for Na+–Ca2+ exchange in cardiac sarcolemmal vesicles.  相似文献   

10.
Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.  相似文献   

11.
12.
In the present study we investigated the effect of acute administration of L-arginine on Na+,K+-ATPase and Mg2+-ATPase activities and on some parameters of oxidative stress (chemiluminescence and total radical-trapping antioxidant parameter-TRAP) in midbrain of adult rats. We also tested the effect of L-NAME on the effects produced by arginine. Sixty-day-old rats were treated with an acute intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II), L-NAME (2 mg/kg) (group III) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group IV). Na+,K+-ATPase activity was significantly reduced in the arginine-treated rats, but was not affected by other treatments. In contrast, Mg2+-ATPase activity was not altered by any treatment. Furthermore, chemiluminescence was significantly increased and TRAP was significantly decreased in arginine-treated rats, whereas the simultaneous injection of L-NAME prevented these effects. These results demonstrate that in vivo arginine administration reduces Na+,K+-ATPase activity possibly through free radical generation induced by NO formation.  相似文献   

13.
Electrophysiological studies on renal thick ascending limb segments indicate the involvement of a luminal Na+/K+/Cl cotransport system and a K+ channel in transepithelial salt transport. Sodium reabsorption across this segment is blocked by the diuretics furosemide and bumetanide. The object of our study has been to identify in intact membranes and reconstitute into phospholipid vesicles the Na+/K+/Cl cotransporter and K+ channel, as an essential first step towards purification of the proteins involved and characterization of their roles in the regulation of transepithelial salt transport. Measurements of 86Rb+ uptake into membrane vesicles against large opposing KCl gradients greatly magnify the ratio of specific compared to non-specific isotope flux pathways. Using this sensitive procedure, it has proved possible to demonstrate in crude microsomal vesicle preparations from rabbit renal outer medulla two 86Rb+ fluxes. (A) A furosemide-inhibited 86Rb+ flux in the absence of Na+ (K+-K+ exchange). This flux is stimulated by an inward Na+ gradient (Na+/K+ cotransport) and is inhibited also by bumetanide. (B) A Ba2+-inhibited 86Rb+ flux, through the K+ channel. Luminal membranes containing the Na+/K+/Cl cotransporter and K+ channels, and basolateral membranes containing the Na+/K+ pumps were separated from the bulk of contaminant protein by metrizamide density gradient centrifugation. The Na+/K+/Cl cotransporter and K+ channel were reconstituted in a functional state by solubilizing both luminal membranes and soybean phospholipid with octyl glucoside, and then removing detergent on a Sephadex column.  相似文献   

14.
E. D?afi?  P. Goswami  W. Mäntele 《BBA》2009,1787(6):730-737
In this study, structural, functional, and mechanistic properties of the Na+/H+ antiporter MjNhaP1 from Methanococcus jannaschii were analyzed by infrared spectroscopic techniques. Na+/H+ antiporters are generally responsible for the regulation of cytoplasmic pH and Na+ concentration. MjNhaP1 is active in the pH range between pH 6 and pH 6.5; below and above it is inactive.The secondary structure analysis on the basis of ATR-IR spectra provides the first insights into the structural changes between inactive (pH 8) and active (pH 6) state of MjNhaP1. It results in decreased ordered structural elements with increasing the pH-value i.e. with inactivation of the protein. Analysis of temperature-dependent FTIR spectra indicates that MjNhaP1 in the active state exhibits a much higher unfolding temperature in the spectral region assigned to α-helical segments. In contrast, the temperature-induced structural changes for β-sheet structure are similar for inactive and active state. Consequently, this structure element is not the part of the activation region of the protein. The surface accessibility of the protein was analyzed by following the extent of H/D exchange. Due to higher content of unordered structural elements a higher accessibility for amide protons is observed for the inactive as compared to the active state of MjNhaP1. Altogether, the results present the active state of MjNhaP1 as the state with ordered structural elements which exhibit high thermal stability and increased hydrophobicity.  相似文献   

15.
The intracellular level of Na+ and K+ of S. cerevisiae strain AB1375 revealed that under KCl as well as sorbitol stress, the cationic level was comparable to the level under no stress conditions. On the other hand, there was a sharp drop in the intracellular K+ content and increase in the Na+ content on addition of NaCl to the medium. However, the total cationic level was close to that under control conditions. In addition to changes in the cationic level, an enhanced production and accumulation of glycerol were also observed under osmotic stress. A regulatory mechanism co-ordinating the intracellular concentration of glycerol as well as Na+, K+ content under osmotic stress conditions has been proposed.  相似文献   

16.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

17.
The role of putative Na+/H+ antiporters encoded by nhaS1 (slr1727), nhaS3 (sll0689), nhaS4 (slr1595), and nhaS5 (slr0415) in salt stress response and internal pH regulation of the cyanobacterium Synechocystis PCC 6803 was investigated. For this purpose the mutants (single, double, and triple) impaired in genes coding for Na+/H+ antiporters were constructed using the method of interposon mutagenesis. PCR analyses of DNA demonstrated that mutations in nhaS1, nhaS4, and nhaS5 genes were segregated completely and the mutants contained only inactivated copies of the corresponding genes. Na+/H+ antiporter encoded by nhaS3 was essential for viability of Synechocystis since no completely segregated mutants were obtained. The steady-state intracellular sodium concentration and Na+/H+ antiporter activities were found to be the same in the wild type and all mutants. No differences were found in the growth rates of wild type and mutants during their cultivation in liquid media supplemented with 0.68 M or 0.85 M NaCl as well as in media buffered at pH 7.0, 8.0, or 9.0. The expression of genes coding for Na+/H+ antiporters was studied. No induction of any Na+/H+ antiporter encoding gene expression was found in wild type or single mutant cells grown under high salt or at different pH values. Nevertheless, in cells of double and triple mutants adapted to high salt or alkaline pH some of the remaining Na+/H+ antiporter encoding genes showed induction. These results might indicate that some of Na+/H+ antiporters can functionally replace each other under stress conditions in Synechocystis cells lacking the activity of more than one antiporter.  相似文献   

18.
The controlling effect of ATP, K+ and Na+ on the rate of (Na+ + K+)-ATPase inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) is used for the mathematical modelling of the interaction of the effectors with the enzyme under equilibrium conditions.
1. 1. Of a series of conceivable interaction models, designed without conceptual restrictions to describe the effector control of inactivation kinetics, only one fits the experimental data described in a preceding paper.
2. 2. The model is characterized by the coexistence of two binding sites for ATP and the coexistence of two separate binding sites for K+ and Na+ on the enzyme-ATP complex. On the basis of this model, the effector parameters fitting the experimental data most closely are estimated by means of nonlinear least-squares fits.
3. 3. The apparent dissociation constants for ATP of the enzyme-ATP complex or of the enzyme-(ATP)2 complex are computed to lie near 0.0024 mM and 0.34 mM, respectively, irrespective of whether K+ and Na+ were absent or K+ and K+ plus Na+, respectively, were present in the experiments.
4. 4. The origin of the high and the low affinity site for binding of ATP to the (Na+ + K+)-ATPase molecule is traced back to the coexistence of two catalytic centres which, although primarily equivalent as to the reactivity of their thiol groups with NBD-Cl, are induced into anticooperative communication by ATP binding and thus show an induced geometric asymmetry.
Keywords: (Na+ + K+)-ATPase; SH-group alkylation; Inactivation kinetics; Mathematical modelling; Substrate affinity  相似文献   

19.
Summary This study presents the effects of Cr, Pb, Ni and Ag on growth, pigments, protein, DNA, RNA, heterocyst frequency, uptake of NH4 + and N03 , loss of electrolytes (Na+ and K+), nitrate reductase and glutamine synthetase activities ofNostoc muscorum. The statistical tests revealed a direct positive correlation between the metal concentration and inhibition of different processes. Ni was found to be more toxic against growth, pigments and heterocyst differentiation compared to the other metals. Inhibition of pigment showed the following trend: chlorophyll > phycocyanin > carotenoid. No generalized trend for inhibition of macromolecules was observed. The loss of K+ and Na+ as affected by Cr, Ni and Pb was similar but more pronounced for K+ than Na+. The inhibition of physiological variables depicted the following trend: Na+ loss > K+ loss > glutamine synthetase > NH4 uptake > growth > N03 uptake > nitrate reductase > heterocyst frequency. This study therefore suggests that loss of electrolytes can be used as a first signal of metal toxicity in cyanobacteria. However, further study is needed to confirm whether the abnormality induced by nickel (branch formation) is a physiological or genetic phenomenon.  相似文献   

20.
Summary Ca++-ATPase activity was demonstrated histochemically at light- and electron-microscopic levels in inner and outer segments of retinal photoreceptor cells of the guinea pig with the use of a newly developed one-step lead-citrate method (Ando et al. 1981). The localization of ouabain-sensitive, K+-dependent p-nitrophenylphosphatase (K+-NPPase) activity, which represents the second dephosphorylative step of the Na+-K+-ATPase system, was studied by use of the one-step method newly adapted for ultracytochemistry (Mayahara et al. 1980). In retinal photoreceptor cells fixed for 15 min in 2% paraformaldehyde the electron-dense Ca++-ATPase reaction product accumulated significantly on the inner membranes of the mitochondria but not on the plasmalemma or other cytoplasmic elements of the inner segments. The membranes of the outer segments remained unstained except the membrane arrays in close apposition to the retinal pigment epithelium. The cytochemical reaction was Ca++- and substrate-dependent and showed sensitivity to oligomycin. When Mg++-ions were used instead of Ca++-ions, a distinct reaction was also found on mitochondrial inner membranes.In contrast to the localization of the Ca++ -ATPase activity, the K+-NPPase activity was demonstrated only on the plasmalemma of the inner segments, but not on the mitochondria, other cytoplasmic elements or the outer segment membranes. This reaction was almost completely abolished by ouabain or by elimination of K+ from the incubation medium.Fellow of the Alexander von Humboldt Foundation, Bonn, Federal Republic of Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号