首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We present a study of the competition between protein refolding and aggregation for simple lattice model proteins. The effect of solvent conditions (i.e., the denaturant concentration and the protein concentration) on the folding and aggregation behavior of a system of simple, two-dimensional lattice protein molecules has been investigated via (dynamic Monte Carlo simulations. The population profiles and aggregation propensities of the nine most populated intermediate configurations exhibit a complex dependence on the solution conditions that can be understood by considering the competition between intra- and interchain interactions. Some of these configurations are not even seen in isolated chain simulations; they are observed to be highly aggregation prone and are stabilized primarily by the aggregation reaction in multiple-chain systems. Aggregation arises from the association of partially folded intermediates rather than from the association of denatured random-coil states. The aggregation reaction dominates over the folding reaction at high protein concentration and low denaturant concentration, resulting in low refolding yields at those conditions. However, optimum folding conditions exist at which the refolding yield is a maximum, in agreement with some experimental observations.  相似文献   

2.
The renaturation of aspartokinase-homoserine dehydrogenase and of some of its smaller fragments has been investigated after complete unfolding by 6 M guanidine hydrochloride. Fluorescence measurements show that a major folding reaction occurs rapidly (in less than a few seconds) after the protein has been transferred to native conditions and results in the shielding of the tryptophan residues from the aqueous solvent; this step also takes place in the fragments and probably corresponds to the independent folding of different segments along the polypeptide chain. The reappearance of the kinase activity, which is an index of the formation of "native" structure within a single chain, is much slower (a few minutes) and has the following properties: it is involved in a kinetic competition with the formation of aggregates; it has an activation energy of 22 +/- 5 kcal/mol; it is not related to a slow reaction in unfolding and thus probably not controlled by the cis-trans isomerization of X-Pro peptide bonds; its rate is inversely proportional to the solvent viscosity. It seems as if this reaction is limited by the mutual arrangement of the regions that have folded rapidly and independently. It is proposed that the mechanism where a fast folding of domains is followed by a slow pairing of folded domains could be generalized to other long chains composed of several domains; such a slow pairing of folded domains would correspond to a rate-limiting process specific to the renaturation of large proteins. The reappearance of the dehydrogenase activity measures the formation of a dimeric species. The dimerization can occur only after each chain has reached its "native" conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Pro-sequence-assisted protein folding   总被引:8,自引:0,他引:8  
Many proteins, including proteases and growth factors, are synthesized as precursors in the form of prepro-proteins. Whereas the pre-sequences usually act as signal peptides for transport, the pro-sequences of an increasing number of these proteins have been found to be essential for the correct folding of their associated proteins. In contrast to the action of molecular chaperones, pro-sequences appear to catalyse the protein-folding reaction directly. The similarity between the pro-sequence-assisted folding mechanisms of different proteases supports the hypothesis that a common folding mechanism has developed through convergent evolution. Further, the frequent requirement of the pro-sequences for both folding and intracellular transport or secretion suggests that these two functionalities are intimately related.  相似文献   

4.
5.
Membrane lipids are increasingly being recognised as active participants in biological events. The precise roles that individual lipids or global properties of the lipid bilayer play in the folding of membrane proteins remain to be elucidated, Here, we find a significant effect of phosphatidylglycerol (PG) on the folding of a trimeric α helical membrane protein from Escherichia coli diacylglycerol kinase. Both the rate and the yield of folding are increased by increasing the amount of PG in lipid vesicles. Moreover, there is a direct correlation between the increase in yield and the increase in rate; thus, folding becomes more efficient in terms of speed and productivity. This effect of PG seems to be a specific requirement for this lipid, rather than a charge effect. We also find an effect of single-chain lyso lipids in decreasing the rate and yield of folding. We compare this to our previous work in which lyso lipids increased the rate and yield of another membrane protein, bacteriorhodopsin. The contrasting effect of lyso lipids on the two proteins can be explained by the different folding reaction mechanisms and key folding steps involved. Our findings provide information on the lipid determinants of membrane protein folding.  相似文献   

6.
Thermodynamic measurements of proteins indicate that the folding to the native state takes place either through stable intermediates or through a two-state process without intermediates. The rather short folding times of proteins indicate that folding is guided through some sequence of contact bindings. We discuss the possibility of reconciling a two-state folding event with a sequential folding process in a schematic model of protein folding. We propose a new dynamical transition temperature that is lower than the temperature at which proteins in equilibrium unfold. This is in qualitative agreement with observations of in vivo protein folding activity quantified by chaperone concentration in Escherichia coli. Finally, we discuss our framework in connection with the unfolding of proteins at low temperatures.  相似文献   

7.
Molecular basis of co-operativity in protein folding.   总被引:4,自引:0,他引:4  
The folding/unfolding transition of proteins is a highly co-operative process characterized by the presence of very few or no thermodynamically stable partially folded intermediate states. The purpose of this paper is to present a thermodynamic formalism aimed at describing quantitatively the co-operative folding behavior of proteins. In order to account for this behavior, a hierarchical algorithm aimed at evaluating the folding/unfolding partition function has been developed. This formalism defines the partition function in terms of multiple levels of interacting co-operative folding units. A co-operative folding unit is defined as a protein structural element that exhibits two-state folding/unfolding behavior. At the most fundamental level are those structural elements that behave co-operatively as a result of purely local interactions. Higher-order co-operative folding units are formed through interactions between different structural elements. The hierarchical formalism utilizes the crystallographic structure of the protein as a template to generate partially folded conformations defined in terms of co-operative folding units. The Gibbs free energy of those states and their corresponding statistical weights are then computed using experimental energetic parameters determined calorimetrically. This formalism has been applied to the case of myoglobin. It is shown that the hierarchical partition function correctly predicts the presence, energetics and co-operativity of the heat and cold denaturation transitions. The major contribution to the co-operative folding behavior arises from the solvent exposure of non-polar residues located in regions complementary to those that have undergone unfolding. This entropically uncompensated and energetically unfavorable solvent exposure characterizes all partially folded states but not the unfolded state, thus minimizing the population of partially folded intermediates throughout the folding/unfolding transition.  相似文献   

8.
The effect of mutations in individual proteins on protein homeostasis, or “proteostasis,” can in principle depend on the mutations' effects on the thermodynamics or kinetics of folding, or both. Here, we explore this issue using a computational model of in vivo protein folding that we call FoldEcoSlim. Our model predicts that kinetic versus thermodynamic control of mutational effects on proteostasis hinges on the relationship between how fast a protein's folding reaction reaches equilibrium and a critical time scale that characterizes the lifetime of a protein in its environment: for rapidly dividing bacteria, this time scale is that of cell division; for proteins that are produced in heterologous expression systems, this time scale is the amount of time before the protein is harvested; for proteins that are synthesized in and then exported from the eukaryotic endoplasmic reticulum, this time scale is that of protein secretion, and so forth. This prediction was validated experimentally by examining the expression yields of the wild type and several destabilized mutants of a model protein, the mouse ortholog of cellular retinoic acid‐binding protein 1.  相似文献   

9.
The study of membrane protein folding is a new and challenging research field. Consequently, there are few direct studies on the in vitro folding of membrane proteins. This review covers work aimed at understanding folding mechanisms and the intermolecular forces that drive the folding of integral membrane proteins. We discuss the kinetic and thermodynamic studies that have been undertaken. Our review also draws on closely related research, mainly from purification studies of functional membrane proteins, and gives an overview of some of the successful methods. A brief survey is also given of the large body of mutagenesis and fragment work on membrane proteins, as this too has relevance to the folding problem. It is noticeable that the choice of solubilizing detergents and lipids can determine the success of the method, and indeed it appears that particular lipid properties can be used to control the rate and efficiency of folding. This has important ramifications for much in vitro folding work in that it aids our understanding of how to obtain and handle folded, functional protein. With this in mind, we also cover some relevant properties of model, lipid-bilayer systems.  相似文献   

10.
Polyol co-solvents such as glycerol increase the thermal stability of proteins. This has been explained by preferential hydration favoring the more compact native over the denatured state. Although polyols are also expected to favor aggregation by the same mechanism, they have been found to increase the folding yields of some large, aggregation-prone proteins. We have used the homotrimeric phage P22 tailspike protein to investigate the origin of this effect. The folding of this protein is temperature-sensitive and limited by the stability of monomeric folding intermediates. At non-permissive temperature (>or=35 degrees C), tailspike refolding yields were increased significantly in the presence of 1-4 m glycerol. At low temperature, tailspike refolding is prevented when folding intermediates are destabilized by the addition of urea. Glycerol could offset the urea effect, suggesting that the polyol acts by stabilizing crucial folding intermediates and not by increasing solvent viscosity. The stabilization effect of glycerol on tailspike folding intermediates was confirmed in experiments using a temperature-sensitive folding mutant protein, by fluorescence measurements of subunit folding kinetics, and by temperature up-shift experiments. Our results suggest that the chemical chaperone effect of polyols observed in the folding of large proteins is due to preferential hydration favoring structure formation in folding intermediates.  相似文献   

11.
The refolding reaction of S54G/P55N ribonuclease T1 is a two-step process, where fast formation of a partly folded intermediate is followed by the slow reaction to the native state, limited by a trans --> cis isomerization of Pro39. The hydrodynamic radius of this kinetic folding intermediate was determined by real-time diffusion NMR spectroscopy. Its folding to the native state was monitored by a series of 128 very fast 2D (15)N-HMQC spectra, to observe the kinetics of 66 individual backbone amide probes. We find that the intermediate is as compact as the native protein with many native chemical shifts. All 66 analyzed amide probes follow the rate-limiting prolyl isomerization, which indicates that this cooperative refolding reaction is fully synchronized. The stability of the folding intermediate was determined from the protection factors of 45 amide protons derived from a competition between refolding and H/D exchange. The intermediate has already gained 40% of the Gibbs free energy of refolding with many protected amides in not-yet-native regions.  相似文献   

12.
Deciphering the code that determines the three-dimensional structure of proteins and the ability to predict the final folded form of a protein is still elusive to molecular biophysists. In the case of several proteins a similar tertiary structure is not accompanied by any significant sequence similarity. The question now remains whether a code beyond the genetic code that describes the arrangement of the amino acid within a three dimensional protein structure. The available data undoubtedly demonstrates that the redundancy of this code must be tremendous. Several techniques such as nuclear magnetic resonance spectroscopy and laser detection techniques, coupled with fast initiation of the folding reaction, can now probe the folding events in milliseconds or even faster and provide highly relevant information. The thermodynamic analysis of the folding process and of kinetic intermediates opens whole new avenue of understanding. Breaking the protein folding code would enable scientists to look at a gene whose function is unknown and predict the three-dimensional structure of the protein it encodes. This would give them a very good idea of what the gene does. In this review we hope to bring together the information available about protein folding with particular emphasis on folding intermediate(s). Additionally, the practical consequences of the solution of the protein folding problem in medicine and biotechnology are also discussed.  相似文献   

13.
Redox signaling loops in the unfolded protein response   总被引:1,自引:0,他引:1  
Higa A  Chevet E 《Cellular signalling》2012,24(8):1548-1555
The endoplasmic reticulum (ER) is the first compartment of secretory pathway. It plays a major role in ER chaperone-assisted folding and quality control, including post-translational modification such as disulfide bond formation of newly synthesized secretory proteins. Protein folding and assembly takes place in the ER, where redox conditions are distinctively different from the other organelles and are favorable for disulfide formation. These reactions generate the production of reactive oxygen species (ROS) as a byproduct of thiol/disulfide exchange reaction among ER oxidoreductin 1 (Ero1), protein disulfide isomerase (PDI) and ER client proteins, during the formation of disulfide bonds in nascent or incorrectly folded proteins. When uncontrolled, this phenomenon perturbs ER homeostasis, thus aggravating the accumulation of improperly folded or unfolded proteins in this compartment (ER stress). This results in the activation of an adaptive mechanism named the unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER-resident membrane proteins (PERK, IRE1 and ATF6) and regulates the expression of the UPR target genes, which themselves encode ER chaperones, folding enzymes, pro-apoptotic proteins and antioxidants, with the objective of restoring ER homeostatic balance. In this review, we will describe redox dependent activation (ER) and amplification (cytosol) loops that control the UPR and the consequences these regulatory loops have on cell fate and physiology.  相似文献   

14.
Studies of the folding pathway of large proteins whose kinetics is complicated due to the formation of several intermediate states are most frequently impeded or totally impossible because of rapid folding phase occurring during instrument dead time. In this paper the obtaining of energy characteristics of one of such proteins—carbonic anhydrase B—is reported. Tryptophan fluorescence and absorption methods have been used to measure the folding and unfolding kinetics of carbonic anhydrase B at different urea concentrations. In spite of the fact that the formation of the initial intermediate state of this protein takes place during the instrument dead time, the population of this state has been estimated in a wide range of urea concentrations. The use of the population of the rapidly formed intermediate state and the effective rates of slow phases of the protein folding/unfolding permitted us to calculate free energies of all the protein states and the height of energy barriers between them. It has been shown that folding of carbonic anhydrase B can be described by a consecutive reaction scheme. The possibility to obtain energy characteristics of carbonic anhydrase would allow studying structural characteristics of both intermediate and transition states via site-directed mutations.  相似文献   

15.
Search and study of the general principles that govern kinetics and thermodynamics of protein folding generate a new insight into the factors controlling this process. Here, based on the known experimental data and using theoretical modeling of protein folding, we demonstrate that there exists an optimal relationship between the average conformational entropy and the average energy of contacts per residue-that is, an entropy capacity-for fast protein folding. Statistical analysis of conformational entropy and number of contacts per residue for 5829 protein structures from four general structural classes (all-alpha, all-beta, alpha/beta, alpha+beta) demonstrates that each class of proteins has its own class-specific average number of contacts (class alpha/beta has the largest number of contacts) and average conformational entropy per residue (class all-alpha has the largest number of rotatable angles phi, psi, and chi per residue). These class-specific features determine the folding rates: alpha proteins are the fastest folding proteins, then follow beta and alpha+beta proteins, and finally alpha/beta proteins are the slowest ones. Our result is in agreement with the experimental folding rates for 60 proteins. This suggests that structural and sequence properties are important determinants of protein folding rates.  相似文献   

16.
Theoretical and in vitro experiments suggest that protein folding cores form early in the process of folding, and that proteins may have evolved to optimize both folding speed and native-state stability. In our previous work (Chen et al., Structure, 14 (2006) 1401), we developed a set of empirical potential functions and used them to analyze interaction energies among secondary-structure elements in two β-sandwich proteins. Our work on this group of proteins demonstrated that the predicted folding core also harbors residues that form native-like interactions early in the folding reaction. In the current work, we have tested our empirical potential functions on structurally-different proteins for which the folding cores have been revealed by protein hydrogen-deuterium exchange experiments. Using a set of 29 unrelated proteins, which have been extensively studied in the literature, we demonstrate that the average prediction result from our method is significantly better than predictions based on other computational methods. Our study is an important step towards the ultimate goal of understanding the correlation between folding cores and native structures.  相似文献   

17.
Apparent transition state movement upon mutation or changes in solvent conditions is frequently observed in protein folding and is often interpreted in terms of Hammond behavior. This led to the conclusion that barrier regions in protein folding are broad maxima on the free energy landscape. Here, we use the concept of self-interaction and cross-interaction parameters to test experimental data of 21 well-characterized proteins for Hammond behavior. This allows us to characterize the origin of transition state movements along different reaction coordinates. Only one of the 21 proteins shows a small but coherent transition state movement in agreement with the Hammond postulate. In most proteins the structure of the transition state is insensitive to changes in protein stability. The apparent change in the position of the transition state upon mutation, which is frequently observed in phi-value analysis, is in most cases due to ground-state effects caused by structural changes in the unfolded state. This argues for significant residual structure in unfolded polypeptide chains of many proteins. Disruption of these residual interactions by mutation often leads to decreased folding rates, which implies that these interactions are still present in the transition state. The failure to detect Hammond behavior shows that the free energy barriers encountered by a folding polypeptide chain are generally rather narrow and robust maxima for all experimentally explorable reaction coordinates.  相似文献   

18.
Autonomous subdomains in protein folding.   总被引:5,自引:5,他引:0       下载免费PDF全文
Proteolytic dissection of native trp repressor and horse heart cytochrome c has been used to infer some of the steps in the folding pathways of the intact proteins. For both proteins, small fragments are capable of undergoing spontaneous noncovalent association to form subdomains with native-like secondary and/or tertiary structural features, suggesting that dissection/reassembly may be a general method to gain insight into the structures of folding intermediates. The importance of this approach is its simplicity and potential applicability to studying the folding pathways of a wide range of proteins. The proteases report on the structure and dynamics of the native state, circumventing the need for prior knowledge of the structures of folding intermediates. The observation that small fragments of proteins can associated noncovalently suggests that protein folding can be viewed as an intramolecular "recognition" process. The results imply that substantial information about protein structure and folding is encoded at the level of subdomains, and that chain connectivity has only a minor role in determining the fold.  相似文献   

19.
K Saito  E Welker  H A Scheraga 《Biochemistry》2001,40(49):15002-15008
The conformational folding of the nativelike intermediate des-[40-95] on the major oxidative folding pathway of bovine pancreatic ribonuclease A (RNase A) has been examined at various pHs and temperatures in the absence of a redox reagent. Des-[40-95] has three of the four disulfide bonds of native RNase A and lacks the bond between Cys40 and Cys95. This three-disulfide species was unfolded at low pH to inhibit any disulfide reshuffling and was refolded at higher pH, allowing both conformational folding and disulfide-reshuffling reactions to take place. As a result of this competition, 15-85% of des-[40-95], depending on the experimental conditions, undergoes intramolecular disulfide-reshuffling reactions. That portion of the des-[40-95] population which has native isomers of essential proline residues appears to fold faster than the disulfide reaction can occur. However, when the folding is retarded, conceivably by the presence of non-native isomers of essential proline residues, des-[40-95] may reshuffle before completing the conformational folding process. These results enable us to distinguish among current models for the critical structure-forming step in oxidative folding and reveal a new model for coupling proline isomerization to disulfide-bond formation. These experiments also demonstrate that the reshuffling-folding competition assay is a useful tool for detecting structured populations in conformational folding intermediates.  相似文献   

20.
Foguel D  Silva JL 《Biochemistry》2004,43(36):11361-11370
Hydrostatic pressure is a robust tool for studying the thermodynamics of protein folding and protein interactions, as well as the dynamics and structure of folding intermediates. One of the main innovations obtained from using high pressure is the stabilization of folding intermediates such as molten-globule conformations, thus providing a unique opportunity for characterizing their structure and dynamics. Equally important is the prospect of understanding protein misfolding diseases by using pressure to populate partially folded intermediates at the junction between productive and off-pathway folding, which may give rise to misfolded proteins, aggregates, and amyloids. High hydrostatic pressure (HHP) has also been used to dissociate nonamyloid aggregates and inclusion bodies. In many proteins, the competition between correct folding and misfolding can lead to formation of insoluble aggregates, an important problem for the biotechnology industry and for human pathologies such as amyloidosis, Alzheimer's, Parkinson's, prion's, and tumor diseases. The diversity of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotechnology companies. The use of high-pressure promises to contribute to the identification of the mechanisms behind these defects and creation of therapies against these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号