首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past five decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. At the same time, in vitro assays for assessing antimalarial drug sensitivity have become indispensable tools for the surveillance of drug resistance and the planning of therapeutic guidelines. Several new in vitro assays have been introduced, designed to be easier to handle than previous tests and allow a faster identification of drug-resistant parasites, as well as for simple evaluation of new drugs. This review examines the various new approaches to the in vitro assessment of malaria drug sensitivity and their limitations.  相似文献   

2.
Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.  相似文献   

3.
Resistance of Plasmodium falciparum to antimalarials is considered one of the factors responsible for the impairment of the malaria treatment and control worldwide. Resistance emerges as a result of selection and then disemination of spontaneous mutant parasites with reduced drug susceptibility. Combination therapy is considered as the main strategy to control antimalarial drug resistance. Currently, combination therapies that include artemisinin derivatives are highly recommended. Combination therapy has been used in Colombia for more than 20 years; however, its impact on preventing the dissemination of drug resistance is unknown. This paper reviews the theoretical bases and clinical studies that support the use of combination therapy.  相似文献   

4.
In order to determine the frequency of therapeutic failures to chloroquine (CQ) in patients with malaria due to either Plasmodium falciparum or P. vivax, and to explore the usefulness of a malaria-free city as a sentinel site to monitor the emergence of drug resistance, 53 patients (44 infected with P. vivax and 9 with P. falciparum) were evaluated at the Laboratory of Parasitology, Universidad del Valle in Cali, Colombia. Patients received 25 mg/kg of CQ divided in three doses over 48 h; they were followed during 28 days according to WHO/PAHO protocols. While therapeutic failures to CQ in the P. vivax group were not detected, the proportion of therapeutic failures in the P. falciparum group was high (78%) and consistent with the reports from endemic areas in Colombia. The diverse origin of cases presenting therapeutic failure confirmed that P. falciparum resistant to CQ is widespread in Colombia, and further supports the change in the national antimalarial drug scheme. Monitoring of drug resistance in malaria free areas would be useful to identify sites requiring efficacy evaluation, and in some situations could be the most appropriate alternative to collect information from endemic areas where therapeutic efficacy studies are not feasible.  相似文献   

5.
The resurgence and spread of antimalarial drug resistance is one of the causes of the worldwide increase of malaria. In Colombia, uncomplicated Plasmodium falciparum malaria has been treated with a combination of amodiaquine (AQ) and sulfadoxine/pyrimethamine (SP) since 2000. The efficacy of these two antimalarials was evaluated after the implementation of the new malaria treatment scheme. In the municipalities of El Charco and Tumaco (Nari?o) on the Pacific Coast region, the standard PAHO protocol was used to evaluate antimalarial efficacy in areas of low to moderate malaria transmission. Patients were randomly allocated to treatment regime in two cities of Nari?o, El Charco (n = 48) and Tumaco (n = 50). After 14 days none of El Charco patients presented therapeutic failure to either antimalarial. However, in Tumaco after 28 days, 12 of 24 (95% CI: 30.6-69.4) patients presented AQ treatment failure while 4 of 26 (95% CI: 5.1-33.1) patients had SP treatment failure. The high level of AQ treatment failure in Tumaco was unexpected because it had been introduced only recently as an antimalarial treatment in Colombia. The results suggest that the use of the current dose of AQ in combination with SP will be therapeutically useful for less time than expected. Use of combined therapies is a key strategy to delay antimalarial resistance. Unfortunately, its success depends on the efficacy of antimalarial drugs individually.  相似文献   

6.
The spread of resistance to antimalarial drugs has required changes in the recommended first-line treatment for falciparum malaria in almost all regions. Most drugs recommended currently are combinations of a long-acting antimalarial and an artemisinin derivative. This article presents the rationale for establishing a web-based, open-access database of antimalarial drug resistance and efficacy: the World Antimalarial Resistance Network (WARN). The goal of this network is to assemble the tools and information that will enable the malaria community to collate, analyze and share contemporary information on antimalarial-drug efficacy in all endemic regions so that decisions on antimalarial-drug use are based on solid evidence.  相似文献   

7.
Petersen I  Eastman R  Lanzer M 《FEBS letters》2011,585(11):1551-1562
Resistance to antimalarial drugs has often threatened malaria elimination efforts and historically has led to the short-term resurgence of malaria incidences and deaths. With concentrated malaria eradication efforts currently underway, monitoring drug resistance in clinical settings complemented by in vitro drug susceptibility assays and analysis of resistance markers, becomes critical to the implementation of an effective antimalarial drug policy. Understanding of the factors, which lead to the development and spread of drug resistance, is necessary to design optimal prevention and treatment strategies. This review attempts to summarize the unique factors presented by malarial parasites that lead to the emergence and spread of drug resistance, and gives an overview of known resistance mechanisms to currently used antimalarial drugs.  相似文献   

8.
Malaria is currently one of the most serious public health problems in Colombia with an endemic/epidemic transmission pattern that has maintained endemic levels and an average of 105,000 annual clinical cases being reported over the last five years. Plasmodium vivax accounts for approximately 70% of reported cases with the remainder attributed almost exclusively to Plasmodium falciparum. A limited number of severe and complicated cases have resulted in mortality, which is a downward trend that has been maintained over the last few years. More than 90% of the malaria cases in Colombia are confined to 70 municipalities (about 7% of the total municipalities of Colombia), with high predominance (85%) in rural areas. The purpose of this paper is to review the progress of malaria-eradication activities and control measures over the past century within the eco-epidemiologic context of malaria transmission together with official consolidated morbidity and mortality reports. This review may contribute to the formulation of new antimalarial strategies and policies intended to achieve malaria elimination/eradication in Colombia and in the region.  相似文献   

9.
Plasmodium falciparum malaria is subject to artificial selection from antimalarial drugs that select for drug-resistant parasites. We describe and apply a flexible new approach to investigate how epistasis, inbreeding, selection heterogeneity and multiple simultaneous drug deployments interact to influence the spread of drug-resistant malaria. This framework recognizes that different human 'environments' within which treatment may occur (such as semi- and non-immune humans taking full or partial drug courses) influence the genetic interactions between parasite loci involved in resistance. Our model provides an explanation for how the rate of spread varies according to different malaria transmission intensities, why resistance might stabilize at intermediate frequencies and also identifies several factors that influence the decline of resistance after a drug is removed. Results suggest that studies based on clinical outcomes might overestimate the spread of resistant parasites, especially in high-transmission areas. We show that when transmission decreases, prevalence might decrease without a corresponding change in frequency of resistance and that this relationship is heavily influenced by the extent of linkage disequilibrium between loci. This has important consequences on the interpretation of data from areas where control is being successful and suggests that reducing transmission might have less impact on the spread of resistance than previously expected.  相似文献   

10.
Trotta RF  Brown ML  Terrell JC  Geyer JA 《Biochemistry》2004,43(17):4885-4891
The development and spread of highly drug-resistant parasites pose a central problem in the control of malaria.Understanding mechanisms that regulate genomic stability, such as DNA repair, in drug-resistant parasites and during drug treatment may help determine whether this rapid onset of resistance is due to an increase in the rate at which resistance-causing mutations are generated. This is the first report to demonstrate DNA repair activities from the malaria-causing parasite Plasmodium falciparum that are specific for ultraviolet light-induced DNA damage. The efficiency of DNA repair differs dramatically among P. falciparum strains with varying drug sensitivities. Most notable is the markedly reduced level of repair in the highly drug-resistant W2 isolate, which has been shown to develop resistance to novel drugs at an increased rate when compared to drug-sensitive strains. Additionally, the antimalarial drug chloroquine and other quinoline-like compounds interfered with the DNA synthesis step of the repair process, most likely a result of direct binding to repair substrates. We propose that altered DNA repair, either through defective repair mechanisms or drug-mediated inhibition, may contribute to the accelerated development of drug resistance in the parasite.  相似文献   

11.
New drugs against malaria are urgently and continuously needed. Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems. A most important antioxidative system consists of (di)thiols which are recycled by disulfide reductases (DR), namely both glutathione reductases (GR) of the malarial parasite Plasmodium falciparum and man, and the thioredoxin reductase (TrxR) of P. falciparum. The aim of our interdisciplinary research is to substantiate DR inhibitors as antimalarial agents. Such compounds are active per se but, in addition, they can reverse thiol-based resistance against other drugs in parasites. Reversal of drug resistance by DR inhibitors is currently investigated for the commonly used antimalarial drug chloroquine (CQ). Our recent strategy is based on the synthesis of inhibitors of the glutathione reductases from parasite and host erythrocyte. With the expectation of a synergistic or additive effect, double-headed prodrugs were designed to be directed against two different and essential functions of the malarial parasite P. falciparum, namely glutathione regeneration and heme detoxification. The prodrugs were prepared by linking bioreversibly a GR inhibitor to a 4-aminoquinoline moiety which is known to concentrate in the acidic food vacuole of parasites. Drug-enzyme interaction was correlated with antiparasitic action in vitro on strains resistant towards CQ and in vivo in Plasmodium berghei-infected mice as well as absence of cytotoxicity towards human cells. Because TrxR of P. falciparum was recently shown to be responsible for the residual glutathione disulfide-reducing capacity observed after GR inhibition in P. falciparum, future development of antimalarial drug-candidates that act by perturbing the redox equilibrium of parasites is based on the design of new double-drugs based on TrxR inhibitors as potential antimalarial drug candidates.  相似文献   

12.
In vitro cultivation of Plasmodium falciparum has been extremely useful in understanding the biology of the human malaria parasite as well as research on the discovery of new antimalarial drugs and vaccines. A chemically defined serum-free medium supplemented with lipid-rich bovine serum albumin (AlbuMAX I) offers the following advantages over human serum-supplemented media for the in vitro culture of P. falciparum: 1) improved growth profile, with more than a 2-fold higher yield of the parasites at any stage of the growth cycle; 2) suitability for in vitro antimalarial screening, as the parasites grown in AlbuMAX and human serum-supplemented media show similar sensitivity to standard and novel antimalarials as well as natural product extracts in the in vitro drug susceptibility assays; and 3) DNA microarray analysis comparing the global gene expression profile of sorbitol-synchronized P. falciparum trophozoites grown in the 2 different media, indicating minimal differences.  相似文献   

13.
ABSTRACT: BACKGROUND: Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand. METHODS: Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization's microtest (mark III) (between 1994 and 2002) and the histidine-rich protein-2 (HRP2)-based enzyme-linked immunosorbent assay (in 2010). Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences. RESULTS: There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar. CONCLUSIONS: Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued surveillance in Thailand, along with increased collaboration and surveillance across the entire Greater Mekong sub-region, is clearly warranted.  相似文献   

14.
The fact that malaria is still an uncontrolled disease is reflected by the genetic organization of the parasite genome. Efforts to curb malaria should begin with proper understanding of the mechanism by which the parasites evade human immune system and evolve resistance to different antimalarial drugs. We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7. We found 60 genes of various functions and lengths, majority (61.67%) of them were performing known functions. Almost all the genes have orthologs in other four species of Plasmodium, of which P. chabaudi seems to be the closest to P. falciparum. However, only two genes were found to be paralogous. Interestingly, the drug-resistant gene, pfcrt was found to be surrounded by seven genes coding for several CG proteins out of which six were reported to be responsible for providing drug resistance to P. vivax. The intergenic regions, in this specified region were generally large in size, majority (73%) of them were of more than 500 nucleotide bp length. We also designed primers for amplification of 21 noncoding DNA fragments in the whole region for estimating genetic diversity and inferring the evolutionary history of this region of P. falciparum genome.  相似文献   

15.
Malaria remains an important health risk among travelers to tropical/subtropical regions. However, in Japan, only 2 antimalarials are licensed for clinical use - oral quinine and mefloquine. The Research Group on Chemotherapy of Tropical Diseases introduced atovaquone-proguanil in 1999, and reported on its excellent antimalarial efficacy and safety for treating non-immune patients with uncomplicated Plasmodium falciparum malaria (20 adult and 3 pediatric cases) in 2006. In the present study, additional cases of malaria were analyzed to confirm the efficacy and safety of this antimalarial drug. Fourteen adult and 2 pediatric cases of P. falciparum malaria and 13 adult cases and 1 pediatric case of P. vivax/ovale malaria were successfully treated with atovaquone-proguanil, including 3 P. falciparum cases in which the antecedent treatment failed. Two patients with P. vivax malaria were treated twice due to primaquine treatment failure as opposed to atovaquone-proguanil treatment failure. Except for 1 patient with P. falciparum malaria who developed a moderate liver function disturbance, no significant adverse effects were observed. Despite the intrinsic limitations of this study, which was not a formal clinical trial, the data showed that atovaquone-proguanil was an effective and well-tolerated therapeutic option; licensure of this drug in Japan could greatly contribute to individually appropriate treatment options.  相似文献   

16.
Drug pressure in the field is believed to be responsible for the emergence of drug-resistant Plasmodium falciparum, the parasite that causes malaria. Variants of the P. falciparum chloroquine resistance transporter (pfcrt) gene have been shown to be responsible for conferring resistance to the commonly used drug chloroquine. In particular, an amino acid mutation, K76T, was shown to have a strong positive correlation with the chloroquine-resistant varieties of malaria parasites. Global studies have reported highly reduced genetic diversity surrounding K76T in the pfcrt gene, which indicates that the mutation has been a target of positive Darwinian natural selection. However, two recent studies of P. falciparum in India found high genetic diversity in the pfcrt gene, which, at first sight, do not support the role of natural selection in the evolution of chloroquine resistance in India.  相似文献   

17.
Four Plasmodium species cause malaria in humans. Most malaria-endemic regions feature mixed infections involving two or more of these species. Factors contributing to heterogeneous parasite species and disease distribution include differences in genetic polymorphisms underlying parasite drug resistance and host susceptibility, mosquito vector ecology and transmission seasonality. It is suggested that unknown factors limit mixed Plasmodium species infections, and that mixed-species infections protect against severe Plasmodium falciparum malaria. Careful examination of methods used to detect these parasites and interpretation of individual- and population-based data are necessary to understand the influence of mixed Plasmodium species infections on malarial disease. This should ensure that deployment of future antimalarial vaccines and drugs will be conducted in a safe and timely manner.  相似文献   

18.
Malaria is one of the world's deadliest diseases and is becoming an increasingly serious problem as malaria parasites develop resistance to most of the antimalarial drugs used today. We previously reported the in vitro and in vivo antimalarial potencies of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) and 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Plasmodium falciparum and Plasmodium berghei parasites. To improve water-solubility for synthetic peroxides, a variety of cyclic peroxides having carboxyl functionality was prepared based on the antimalarial candidate, N-251, and their antimalarial activities were determined. The reactions of N-89 and its derivatives with Fe(II) demonstrated a highly efficient formation of the corresponding carbon radical which may be suspected as a key for the antiparasitic activity.  相似文献   

19.
Due to resistance by Plasmodium falciparum, the most virulent strain of the four species of human malaria parasites, to most currently used antimalarial drugs, development of new effective antimalarials is urgently needed. Derivatives of 9-anilinoacridine, an antitumor drug, have been shown to inhibit P. falciparum growth in culture and to inhibit parasite DNA topoisomerase II activity in vitro. Using KCl-SDS precipitation assay to detect the presence of protein-DNA complexes within parasite cells, an indicator of DNA topoisomerase II inactivation, derivatives containing 3,6-diNH(2) substitutions with 1'-electron donating (NMe(2), CH(2)NMe(2), NHSO(2)Me, OH, OMe), and 1'-electron withdrawing (SO(2)NH(2)) groups produced protein-DNA complexes. However, the antimalarial pyronaridine, 9-anilinoazaacridine, did not generate protein-DNA complexes, although it was capable of inhibiting P. falciparum DNA topoisomerase II activity in vitro. These results should prove useful in future designs of novel antimalarial compounds directed against parasite DNA topoisomerase II.  相似文献   

20.
The current status of drug resistance in malaria   总被引:2,自引:0,他引:2  
Drug resistant malaria is a major health problem; it poses a threat to the lives of millions of people and renders it less possible for the worldwide eradication programme to attain its goal in the foreseeable future. At present Plasmodium falciparum is resistant to varying degrees to all antimalarial drugs available e.g. chloroquine, sulfadoxine and pyrimethamine, quinine and even to the new compound, mefloquine.Chloroquine-resistant P. falciparum originated in Thailand some 25 years ago has spread in all directions to Southeast Asia, Western Pacific, to central and southeast India, East Africa and West Africa. In South America, it started in Colombia and now affects the whole of Central and South America with the exception of Argentina, Paraguay and Peru which practically have no falciparum malaria.The mechanism of drug resistance in malaria parasites is believed to be due to gene mutation selected under drug pressure. It may be one-step as in pyrimethamine or multi-step as in chloroquine. Resistant mutation occurs both in schizogony and sporogony. The parasites lose their S strains through hybridization or overgrowth, shifting in character progressively towards high grade resistance.Policies that may help to minimise further development of resistance to existing compounds and to safeguard any new drugs that may be developed in the future include (1) limit the distribution of antimalarials; (2) select priority groups for prophylaxis; (3) use the gametocidal drug primaquine to restrict transmission of resistant strains; (4) establish an effective drug monitoring system; (5) only deploy drugs for control as part of an integrated campaign; (6) control use of new antimalarial; (7) encourage the use of tested effective drug regimens for treatment and (8) encourage research on antimalarials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号