首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The solution structure of the 48-kDa IIA(Man)-HPr complex of the mannose branch of the Escherichia coli phosphotransferase system has been solved by NMR using conjoined rigid body/torsion angle-simulated annealing on the basis of intermolecular nuclear Overhauser enhancement data and residual dipolar couplings. IIA(Man) is dimeric and has two symmetrically related binding sites per dimer for HPr. A convex surface on HPr, formed primarily by helices 1 and 2, interacts with a deep groove at the interface of the two subunits of IIA(Man). The interaction surface on IIA(Man) is predominantly helical, comprising helix 3 from the subunit that bears the active site His-10 and helices 1, 4, and 5 from the other subunit. The total buried accessible surface area at the protein-protein interface is 1450 A(2). The binding sites on the two proteins are complementary in terms of shape and distribution of hydrophobic, hydrophilic, and charged residues. The active site histidines, His-10 of IIA(Man) and His-15 (italics indicate HPr residues) of HPr, are in close proximity. An associative transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the N-epsilon2 atom of His-10 and the N-delta1 atom of His-15 can be readily formed with negligible displacement in the backbone coordinates of the residues immediately adjacent to the active site histidines. Comparing the structures of complexes of HPr with three other structurally unrelated phosphotransferase system proteins, enzymes I, IIA(glucose), and IIA(mannitol), reveals a number of common features that provide a molecular basis for understanding how HPr specifically recognizes a wide range of diverse proteins.  相似文献   

2.
The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.  相似文献   

3.
The high resolution crystal structures of two interacting proteins from the phosphoenolpyruvate:sugar phosphotransferase system, the histidine-containing phosphocarrier protein (HPr) and the IIA domain of glucose permease (IIA(Glc)) from Bacillus subtilis, provide the basis for modeling the transient binary complex formed during the phosphoryl group transfer. The complementarity of the interacting surfaces implies that no major conformational transition is required. The negatively charged phosphoryl group is buried in the interface, suggesting a key role for electrostatic interactions. It is proposed that the phosphoryl transfer is triggered by a switch between two salt bridges involving Arg-17 of the HPr. The first, prior to phosphoryl group transfer, is intramolecular, with the phosphorylated His-15. The second, during the transfer, is intermolecular, with 2 aspartate residues associated with the active site of IIA(Glc). Such alternating ion pairs may be mechanistically important in other protein-protein phosphotransfer reactions.  相似文献   

4.
Solution structures of complexes between the isolated A (IIA(Man)) and B (IIB(Man)) domains of the cytoplasmic component of the mannose transporter of Escherichia coli have been solved by NMR. The complex of wild-type IIA(Man) and IIB(Man) is a mixture of two species comprising a productive, phosphoryl transfer competent complex and a non-productive complex with the two active site histidines, His-10 of IIA(Man) and His-175 of IIB(Man), separated by approximately 25A. Mutation of the active site histidine, His-10, of IIA(Man) to a glutamate, to mimic phosphorylation, results in the formation of a single productive complex. The apparent equilibrium dissociation constants for the binding of both wild-type and H10E IIA(Man) to IIB(Man) are approximately the same (K(D) approximately 0.5 mM). The productive complex can readily accommodate a transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the Nepsilon2 atom of His-10 of IIA(Man) and the Ndelta1 atom of His-175 of IIB(Man) with negligible (<0.2A) local backbone conformational changes in the immediate vicinity of the active site. The non-productive complex is related to the productive one by a approximately 90 degrees rotation and approximately 37A translation of IIB(Man) relative to IIA(Man), leaving the active site His-175 of IIB(Man) fully exposed to solvent in the non-productive complex. The interaction surface on IIA(Man) for the non-productive complex comprises a subset of residues used in the productive complex and in both cases involves both subunits of IIA(Man). The selection of the productive complex by IIA(Man)(H10E) can be attributed to neutralization of the positively charged Arg-172 of IIB(Man) at the center of the interface. The non-productive IIA(Man)-IIB(Man) complex may possibly be relevant to subsequent phosphoryl transfer from His-175 of IIB(Man) to the incoming sugar located on the transmembrane IIC(Man)-IID(Man) complex.  相似文献   

5.
The Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) in prokaryotes mediates the uptake and phosphorylation of its numerous substrates through a phosphoryl transfer chain where a phosphoryl transfer protein, HPr, transfers its phosphoryl group to any of several sugar-specific Enzyme IIA proteins in preparation for sugar transport. A phosphoryl transfer protein of the PTS, NPr, homologous to HPr, functions to regulate nitrogen metabolism and shows virtually no enzymatic cross-reactivity with HPr. Here we describe the genetic engineering of a "chimeric" HPr/NPr protein, termed CPr14 because 14 amino acid residues of the interface were replaced. CPr14 shows decreased activity with most PTS permeases relative to HPr, but increases activity with the broad specificity mannose permease. The results lead to the proposal that HPr is not optimal for most PTS permeases but instead represents a compromise with suboptimal activity for most PTS permeases. The evolutionary implications are discussed.  相似文献   

6.
The permeases of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS), the sugar-specific enzymes II, are energized by sequential phosphoryl transfer from phosphoenolpyruvate to (i) enzyme I, (ii) the phosphocarrier protein HPr, (iii) the enzyme IIA domains of the permeases, and (iv) the enzyme IIBC domains of the permeases which transport and phosphorylate their sugar substrates. A number of site-specific mutants of HPr were examined by using kinetic approaches. Most of the mutations exerted minimal effects on the kinetic parameters characterizing reactions involving phosphoryl transfer from phospho-HPr to various sugars. However, when the well-conserved aspartyl 69 residue in HPr was changed to a glutamyl residue, the affinities for phospho-HPr of the enzymes II specific for mannitol, N-acetylglucosamine, and beta-glucosides decreased markedly without changing the maximal reaction rates. The same mutation reduced the spontaneous rate of phosphohistidyl HPr hydrolysis but did not appear to alter the rate of phosphoryl transfer from phospho-enzyme I to HPr. When the adjacent glutamyl residue 70 in HPr was changed to a lysyl residue, the Vmax values of the reactions catalyzed by the enzymes II were reduced, but the Km values remained unaltered. Changing this residue to alanine exerted little effect. Site-specific alterations in the C terminus of the beta-glucoside enzyme II which reduced the maximal reaction rate of phosphoryl transfer about 20-fold did not alter the relative kinetic parameters because of the aforementioned mutations in HPr. Published three-dimensional structural analyses of HPr and the complex of HPr with the glucose-specific enzyme IIA (IIAGlc) (homologous to the beta-glucoside and N-acetylglucosamine enzyme IIA domains) have revealed that residues 69 and 70 in HPr are distant from the active phosphorylation site and the IIAGlc binding interface in HPr. The results reported therefore suggest that residues D-69 and E-70 in HPr play important roles in controlling conformational aspects of HPr that influence (i) autophosphohydrolysis, (ii) the interaction of this protein with the sugar permeases of the bacterial phosphotransferase system, and (iii) catalysis of phosphoryl transfer to the IIA domains in these permeases.  相似文献   

7.
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.  相似文献   

8.
The solution structure of trimeric Escherichia coli enzyme IIA(Chb) (34 kDa), a component of the N,N'-diacetylchitobiose/lactose branch of the phosphotransferase signal transduction system, has been determined by NMR spectroscopy. Backbone residual dipolar couplings were used to provide long range orientational restraints, and long range (|i - j| > or = 5 residues) nuclear Overhauser enhancement restraints were derived exclusively from samples in which at least one subunit was 15N/13C/2H/(Val-Leu-Ile)-methyl-protonated. Each subunit consists of a three-helix bundle. Hydrophobic residues lining helix 3 of each subunit are largely responsible for the formation of a parallel coiled-coil trimer. The active site histidines (His-89 from each subunit) are located in three symmetrically placed deep crevices located at the interface of two adjacent subunits (A and C, C and B, and B and A). Partially shielded from bulk solvent, structural modeling suggests that phosphorylated His-89 is stabilized by electrostatic interactions with the side chains of His-93 from the same subunit and Gln-91 from the adjacent subunit. Comparison with the x-ray structure of Lactobacillus lactis IIA(Lac) reveals some substantial structural differences, particularly in regard to helix 3, which exhibits a 40 degrees kink in IIA(Lac) versus a 7 degrees bend in IIA(Chb). This is associated with the presence of an unusually large (230-angstroms3) buried hydrophobic cavity at the trimer interface in IIA(Lac) that is reduced to only 45 angstroms3) in IIA(Chb).  相似文献   

9.
10.
The phosphoenolpyruvate:glycose transferase system (PTS) is a prototypic signaling system responsible for the vectorial uptake and phosphorylation of carbohydrate substrates. The accompanying papers describe the proteins and product of the Escherichia coli N, N-diacetylchitobiose ((GlcNAc)(2)) PTS-mediated permease. Unlike most PTS transporters, the Chb system is composed of two soluble proteins, IIA(Chb) and IIB(Chb), and one transmembrane receptor (IIC(Chb)). The oligomeric states of PTS permease proteins and phosphoproteins have been difficult to determine. Using analytical ultracentrifugation, both dephospho and phosphorylated IIA(Chb) are shown to exist as stable dimers, whereas IIB(Chb), phospho-IIB(Chb) and the mutant Cys10SerIIB(Chb) are monomers. The mutant protein Cys10SerIIB(Chb) is unable to accept phosphate from phospho-IIA(Chb) but forms a stable higher order complex with phospho-IIA(Chb) (but not with dephospho-IIA(Chb)). The stoichiometry of proteins in the purified complex was determined to be 1:1, indicating that two molecules of Cys10SerIIB(Chb) are associated with one phospho-IIA(Chb) dimer in the complex. The complex appears to be a transition state analogue in the phosphotransfer reaction between the proteins. A model is presented that describes the concerted assembly and disassembly of IIA(Chb)-IIB(Chb) complexes contingent on phosphorylation-dependent conformational changes, especially of IIA(Chb).  相似文献   

11.
The solution structure of the second protein-protein complex of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system, that between histidine-containing phosphocarrier protein (HPr) and glucose-specific enzyme IIA(Glucose) (IIA(Glc)), has been determined by NMR spectroscopy, including the use of dipolar couplings to provide long-range orientational information and newly developed rigid body minimization and constrained/restrained simulated annealing methods. A protruding convex surface on HPr interacts with a complementary concave depression on IIA(Glc). Both binding surfaces comprise a central hydrophobic core region surrounded by a ring of polar and charged residues, positive for HPr and negative for IIA(Glc). Formation of the unphosphorylated complex, as well as the phosphorylated transition state, involves little or no change in the protein backbones, but there are conformational rearrangements of the interfacial side chains. Both HPr and IIA(Glc) recognize a variety of structurally diverse proteins. Comparisons with the structures of the enzyme I-HPr and IIA(Glc)-glycerol kinase complexes reveal how similar binding surfaces can be formed with underlying backbone scaffolds that are structurally dissimilar and highlight the role of redundancy and side chain conformational plasticity.  相似文献   

12.
The solution structure of the cytoplasmic B domain of the mannitol (Mtl) transporter (II(Mtl)) from the mannitol branch of the Escherichia coli phosphotransferase system has been solved by multidimensional NMR spectroscopy with extensive use of residual dipolar couplings. The ordered IIB(Mtl) domain (residues 375-471 of II(Mtl)) consists of a four-stranded parallel beta-sheet flanked by two helices (alpha(1) and alpha(3)) on one face and helix alpha(2) on the opposite face with a characteristic Rossmann fold comprising two right-handed beta(1)alpha(1)beta(2) and beta(3)alpha(2)beta(4) motifs. The active site loop is structurally very similar to that of the eukaryotic protein tyrosine phosphatases, with the active site cysteine (Cys-384) primed in the thiolate state (pK(a) < 5.6) for nucleophilic attack at the phosphorylated histidine (His-554) of the IIA(Mtl) domain through stabilization by hydrogen bonding interactions with neighboring backbone amide groups at positions i + 2/3/4 from Cys-384 and with the hydroxyl group of Ser-391 at position i + 7. Modeling of the phosphorylated state of IIB(Mtl) suggests that the phosphoryl group can be readily stabilized by hydrogen bonding interactions with backbone amides in the i + 2/4/5/6/7 positions as well as with the hydroxyl group of Ser390 at position i + 6. Despite the absence of any significant sequence identity, the structure of IIB(Mtl) is remarkably similar to the structures of bovine protein tyrosine phosphatase (which contains two long insertions relative to IIB(Mtl)) and the cytoplasmic B component of enzyme II(Chb), which fulfills an analogous role to IIB(Mtl) in the N,N'-diacetylchitobiose branch of the phosphotransferase system. All three proteins utilize a cysteine residue in the nucleophilic attack of a phosphoryl group covalently bound to another protein.  相似文献   

13.
The structural and thermodynamic impact of phosphorylation on the interaction of the N-terminal domain of enzyme I (EIN) and the histidine phosphocarrier protein (HPr), the two common components of all branches of the bacterial phosphotransferase system, have been examined using NMR spectroscopy and isothermal titration calorimetry. His-189 is located at the interface of the alpha and alphabeta domains of EIN, resulting in rather widespread chemical shift perturbation upon phosphorylation, in contrast to the highly localized perturbations seen for HPr, where His-15 is fully exposed to solvent. Residual dipolar coupling measurements, however, demonstrate unambiguously that no significant changes in backbone conformation of either protein occur upon phosphorylation: for EIN, the relative orientation of the alpha and alphabeta domains remains unchanged; for HPr, the backbone /Psi torsion angles of the active site residues are unperturbed within experimental error. His --> Glu/Asp mutations of the active site histidines designed to mimic the phosphorylated states reveal binding equilibria that favor phosphoryl transfer from EIN to HPr. Although binding of phospho-EIN to phospho-HPr is reduced by a factor of approximately 21 relative to the unphosphorylated complex, residual dipolar coupling measurements reveal that the structures of the unphosphorylated and biphosphorylated complexes are the same. Hence, the phosphorylation states of EIN and HPr shift the binding equilibria predominantly by modulating intermolecular electrostatic interactions without altering either the backbone scaffold or binding interface. This facilitates highly efficient phosphoryl transfer between EIN and HPr, which is estimated to occur at a rate of approximately 850 s(-1) from exchange spectroscopy.  相似文献   

14.
The solution structure of the post-transition state complex between the isolated cytoplasmic A (IIAMtl) and phosphorylated B (phospho-IIBMtl) domains of the mannitol transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-554 of IIAMtl was mutated to glutamine to block phosphoryl transfer activity, and the active site Cys-384 of IIBMtl (residues of IIBMtl are denoted in italic type) was substituted by serine to permit the formation of a stable phosphorylated form of IIBMtl. The two complementary interaction surfaces are predominantly hydrophobic, and two methionines on IIBMtl, Met-388 and Met-393, serve as anchors by interacting with two deep pockets on the surface of IIAMtl. With the exception of a salt bridge between the conserved Arg-538 of IIAMtl and the phosphoryl group of phospho-IIBMtl, electrostatic interactions between the two proteins are limited to the outer edges of the interface, are few in number, and appear to be weak. This accounts for the low affinity of the complex (Kd approximately 3.7 mm), which is optimally tuned to the intact biological system in which the A and B domains are expressed as a single polypeptide connected by a flexible 21-residue linker. The phosphoryl transition state can readily be modeled with no change in protein-protein orientation and minimal perturbations in both the backbone immediately adjacent to His-554 and Cys-384 and the side chains in close proximity to the phosphoryl group. Comparison with the previously solved structure of the IIAMtl-HPr complex reveals how IIAMtl uses the same interaction surface to recognize two structurally unrelated proteins and explains the much higher affinity of IIAMtl for HPr than IIBMtl.  相似文献   

15.
The lactose transport protein (LacS) of Streptococcus thermophilus is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of Escherichia coli, which has been implicated in sugar binding and in coupling of sugar and H+ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose (beta-galactoside), melibiose (alpha-galactoside), and the lactose analog methyl-beta-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and methyl-beta-D-thiogalactopyranoside by the H376Q mutant was approximately 2-fold reduced in comparison to the activity of the wild-type transport protein. The data indicate that His-376 is involved in sugar recognition and is important, but not essential, for the cotransport of protons and galactosides. The carboxyl-terminal domain of LacS contains 2 histidine residues (His-537 and His-552) that are conserved in seven homologous IIA protein(s) (domains) of PTSs. P-enolpyruvate-dependent phosphorylation of wild-type LacS, but not of the mutant H552Q, was demonstrated using purified Enzyme I and HPr, the general energy coupling proteins of the PTS, and inside-out membrane vesicles isolated from E. coli in which the lactose transport gene was expressed. The His-537 and His-552 mutations did not affect transport activity when the corresponding genes were expressed in E. coli.  相似文献   

16.
The crystal structure of the IIA domain of the glucose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) from Bacillus subtilis has been determined at 2.2-A resolution. Refinement of the structure is in progress, and the current R-factor is 0.201 (R = sigma h parallel Fo magnitude of - Fc parallel/sigma h magnitude of Fo, where magnitude of Fo and magnitude of Fc are the observed and calculated structure factor amplitudes, respectively) for data between 6.0- and 2.2-A resolution for which F greater than or equal to 2 sigma (F). This is an antiparallel beta-barrel structure that incorporates "Greek key" and "jellyroll" topological motifs. A shallow depression is formed at the active site by part of the beta-sheet and an omega-loop flanking one side of the sheet. His83, the histidyl residue which is the phosphorylation target of HPr and which transfers the phosphoryl group to the IIB domain of the permease, is located at the C-terminus of a beta-strand. The N epsilon atom is partially solvated and also interacts with the N epsilon atom of a second histidyl residue, His68, located at the N-terminus of an adjacent beta-strand, suggesting they share a proton. The geometry of the hydrogen bond is imperfect, though. Electrostatic interactions with other polar groups and van der Waals contacts with the side chains of two flanking phenylalanine residues assure the precise orientation of the imidazole rings. The hydrophobic nature of the surface around the His83-His68 pair may be required for protein-protein recognition by HPr or/and by the IIB domain of the permease. The side chains of two aspartyl residues, Asp31 and Asp87, are oriented toward each other across a narrow groove, about 7 A from the active-site His83, suggesting they may play a role in protein-protein interaction. A model of the phosphorylated form of the molecule is proposed, in which oxygen atoms of the phosphoryl group interact with the side chain of His68 and with the main-chain nitrogen atom of a neighboring residue, Val89. The model, in conjunction with previously reported site-directed mutagenesis experiments, suggests that the phosphorylation of His83 may be accompanied by the protonation of His68. This may be important for the interaction with the IIB domain of the permease and/or play a catalytic role in the phosphoryl transfer from IIA to IIB.  相似文献   

17.
18.
Enzyme II permeases of the phosphoenolpyruvate:glycose phosphotransferase system comprise one to five separately encoded polypeptides, but most contain similar domains (IIA, IIB, and IIC). The phosphoryl group is transferred from one domain to another, with histidine as the phosphoryl acceptor in IIA and cysteine as the acceptor in certain IIB domains. IIB(Chb) is a phosphocarrier in the uptake/phosphorylation of the chitin disaccharide, (GlcNAc)(2) by Escherichia coli and is unusual because it is separately encoded and soluble. Both the crystal and solution structures of a IIB(Chb) mutant (C10S) have been reported. In the present studies, homogeneous phospho-IIB(Chb) was isolated, and the phosphoryl-Cys linkage was established by (31)P NMR spectroscopy. Rate constants for the hydrolysis of phospho-IIB(Chb) plotted versus pH gave the same shape peak reported for the model compound, butyl thiophosphate, but was shifted about 4 pH units. Evidence is presented for a stable complex between homogeneous Cys10SerIIB(Chb) (which cannot be phosphorylated) and phospho-IIA(Chb), but not with IIA(Chb). The complex (a tetramer (3)) contains equimolar quantities of the two proteins and has been chemically cross-linked. It appears to be an analogue of the transition state complex in the reaction: phospho-IIA(Chb) + IIB(Chb) <--> IIA(Chb) + phospho-IIB(Chb). This is apparently the first report of the isolation of a transition state analogue in a protein-protein phosphotransfer reaction.  相似文献   

19.
1H and 31P nuclear magnetic resonance investigations of the phosphoprotein intermediate P-HPr and the parent molecule HPr of the E. coli phosphoenolpyruvate dependent phosphotransferase system (PTS) show that HPr can exist in two conformations. These conformations influence the protonation state of the reactive histidine residue, thereby determining the reaction pathway in the phosphoryl group transfer step. A general mechanism is proposed for the energy-coupling process in the PTS.  相似文献   

20.
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) includes a collection of proteins that accomplish phosphoryl transfer from phosphoenolpyruvate (PEP) to a sugar in the course of transport. The soluble proteins of the glucose transport pathway also function as regulators of diverse systems. The mechanism of interaction of the phosphoryl carrier proteins with each other as well as with their regulation targets has been amenable to study by nuclear magnetic resonance (NMR) spectroscopy. The three-dimensional solution structures of the complexes between the N-terminal domain of enzyme I and HPr and between HPr and enzyme IIA(Glc) have been elucidated. An analysis of the binding interfaces of HPr with enzyme I, IIA(Glc) and glycogen phosphorylase revealed that a common surface on HPr is involved in all these interactions. Similarly, a common surface on IIA(Glc) interacts with HPr, IIB(Glc) and glycerol kinase. Thus, there is a common motif for the protein-protein interactions characteristic of the PTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号