首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural selection varies widely among locations of a species’ range, favoring population divergence and adaptation to local environmental conditions. Selection also differs between females and males, favoring the evolution of sexual dimorphism. Both forms of within‐species evolutionary diversification are widely studied, though largely in isolation, and it remains unclear whether environmental variability typically generates similar or distinct patterns of selection on each sex. Studies of sex‐specific local adaptation are also challenging because they must account for genetic correlations between female and male traits, which may lead to correlated patterns of trait divergence between sexes, whether or not local selection patterns are aligned or differ between the sexes. We quantified sex‐specific divergence in five clinally variable traits in Drosophila melanogaster that individually vary in their magnitude of cross‐sex genetic correlation (i.e., from moderate to strongly positive). In all five traits, we observed parallel male and female clines, regardless of the magnitude of their genetic correlation. These patterns imply that parallel spatial divergence of female and male traits is a reflection of sexually concordant directional selection imposed by local environmental conditions. In such contexts, genetic correlations between the sexes promote, rather than constrain, local adaptation to a spatially variable environment.  相似文献   

2.
Genetic correlations between the sexes can constrain the evolution of sexual dimorphism and be difficult to alter, because traits common to both sexes share the same genetic underpinnings. We tested whether artificial correlational selection favoring specific combinations of male and female traits within families could change the strength of a very high between-sex genetic correlation for flower size in the dioecious plant Silene latifolia. This novel selection dramatically reduced the correlation in two of three selection lines in fewer than five generations. Subsequent selection only on females in a line characterized by a lower between-sex genetic correlation led to a significantly lower correlated response in males, confirming the potential evolutionary impact of the reduced correlation. Although between-sex genetic correlations can potentially constrain the evolution of sexual dimorphism, our findings reveal that these constraints come not from a simple conflict between an inflexible genetic architecture and a pattern of selection working in opposition to it, but rather a complex relationship between a changeable correlation and a form of selection that promotes it. In other words, the form of selection on males and females that leads to sexual dimorphism may also promote the genetic phenomenon that limits sexual dimorphism.  相似文献   

3.
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns.  相似文献   

4.
Sex-specific plasticity, the differential response that the genome of males and females may have to different environments, is a mechanism that can affect the degree of sexual dimorphism. Two adaptive hypotheses have been proposed to explain how sex-specific plasticity affects the evolution of sexual size dimorphism. The adaptive canalization hypothesis states that the larger sex exhibits lesser plasticity compared to the smaller sex due to strong directional selection for a large body size, which penalizes individuals attaining sub-optimal body sizes. The condition-dependence hypothesis states that the larger sex exhibits greater plasticity than the smaller sex due to strong directional selection for a large body size favoring a greater sensitivity as an opportunistic mechanism for growth enhancement under favorable conditions. While the relationship between sex-specific plasticity and sexual dimorphism has been studied mainly in invertebrates, its role in long-lived vertebrates has received little attention. In this study we tested the predictions derived from these two hypotheses by comparing the plastic responses of body size and shape of males and females of the snapping turtle (Chelydra serpentina) raised under common garden conditions. Body size was plastic, sexually dimorphic, and the plasticity was also sex-specific, with males exhibiting greater body size plasticity relative to females. Because snapping turtle males are larger than females, sexual size dimorphism in this species appears to be driven by an increased plasticity of the larger sex over the smaller sex as predicted by the condition-dependent hypothesis. However, male body size was enhanced under relatively limited resources, in contrast to expectations from this model. Body shape was also plastic and sexually dimorphic, however no sex by environment interaction was found in this case. Instead, plasticity of sexual shape dimorphism seems to evolve in parallel for males and females as both sexes responded similarly to different environments.  相似文献   

5.
Evaluating the genetic architecture of sexual dimorphism can aid our understanding of the extent to which shared genetic control of trait variation versus sex‐specific control impacts the evolutionary dynamics of phenotypic change within each sex. We performed a QTL analysis on Silene latifolia to evaluate the contribution of sex‐specific QTL to phenotypic variation in 46 traits, whether traits involved in trade‐offs had colocalized QTL, and whether the distribution of sex‐specific loci can explain differences between the sexes in their variance/covariance matrices. We used a backcross generation derived from two artificial‐selection lines. We found that sex‐specific QTL explained a significantly greater percent of the variation in sexually dimorphic traits than loci expressed in both sexes. Genetically correlated traits often had colocalized QTL, whose signs were in the expected direction. Lastly, traits with different genetic correlations within the sexes displayed a disproportionately high number of sex‐specific QTL, and more QTL co‐occurred in males than females, suggesting greater trait integration. These results show that sex differences in QTL patterns are congruent with theory on the resolution of sexual conflict and differences based on G ‐matrix results. They also suggest that trade‐offs and trait integration are likely to affect males more than females.  相似文献   

6.
The evolution of sexual dimorphism involves an interaction between sex-specific selection and a breakdown of genetic constraints that arise because the two sexes share a genome. We examined genetic constraints and the effect of sex-specific selection on a suite of sexually dimorphic display traits in Drosophila serrata. Sexual dimorphism varied among nine natural populations covering a substantial portion of the species range. Quantitative genetic analyses showed that intersexual genetic correlations were high because of autosomal genetic variance but that the inclusion of X-linked effects reduced genetic correlations substantially, indicating that sex linkage may be an important mechanism by which intersexual genetic constraints are reduced in this species. We then explored the potential for both natural and sexual selection to influence these traits, using a 12-generation laboratory experiment in which we altered the opportunities for each process as flies adapted to a novel environment. Sexual dimorphism evolved, with natural selection reducing sexual dimorphism, whereas sexual selection tended to increase it overall. To this extent, our results are consistent with the hypothesis that sexual selection favors evolutionary divergence of the sexes. However, sex-specific responses to natural and sexual selection contrasted with the classic model because sexual selection affected females rather than males.  相似文献   

7.
Patterns, such as bars and spots, are common in birds. Some patterns can function in camouflage and/or communication and can benefit both males and females, paving the way for elaboration in sexual dimorphism. Historically, sexual dichromatism was predominantly considered to be a consequence of mating systems. However, the distribution of traits between the sexes is not always indicative of function; genetic correlation may cause traits to evolve in both sexes and traits may serve a social function in males and/or females. In addition, sexual dichromatism in bird plumage patterns can be composed of multiple types of patterns within and/or between the sexes. Therefore, there can be more than one type of dimorphism and some are more elaborate than others. Under classical models of genetic correlation, patterns evolve in both sexes followed by a loss of patterning in one sex. Elaborate types of sexual dimorphism in plumage patterns may be due to selection acting on existing patterns and are perhaps derived. Waterfowl (Anseriformes) and gamebirds (Galliformes) arguably have the most striking plumage patterns. Using 288 species from these orders I reconstructed the evolutionary history of plumage pattern dimorphism. There was little support for genetic correlation but elaborate types of dimorphism are probably derived. Backward and forward evolutionary transitions between different types of dimorphism can occur by loss or elaboration. These results demonstrate that plumage patterns are evolutionary labile and current forms may represent shifting adaptations to a changing environment. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 262–273.  相似文献   

8.
Sex-limited mutations and the evolution of sexual dimorphism   总被引:4,自引:0,他引:4  
Abstract.— Although the developmental and genetic mechanisms underlying sex differences are being elucidated in great detail in a number of species, there remains a breach between proximate and evolutionary studies of sexual dimorphism. More precisely, the evolution of sex-limited gene expression at autosomal loci has not been well reasoned using either theoretical or empirical methods. Here, I show that a Mendelian genetic model including elementary details of sexual differentiation provides novel insight into the evolution of sex differences via sex limitation. This model indicates that the nature of allelic effects and the pattern of selection must be known in both sexes to predict the evolution of sex differences. That is, selection interacts with genetic variation for sexual dimorphism to produce unanticipated patterns of trait divergence or convergence between the sexes. Ultimately, this model may explain why previous models for the evolution of sexual dimorphism do not predict the erratic behavior of the sex difference during artificial selection experiments.  相似文献   

9.
1. The energy available for reproduction is usually limited by resource acquisition (i.e. condition). Because condition is known to be strongly affected by environmental factors, reproductive investments also vary across heterogeneous environments. 2. Although the condition dependence of reproductive investment is common to both sexes, reproductive traits may exhibit sexually different responses to environmental fluctuation due to sex‐specific life‐history strategies. However, few direct experimental studies have investigated the condition dependence of reproductive investments in both sexes. 3. We investigated the condition dependence of life‐history and reproductive traits of males and females in the beetle Gnatocerus cornutus Fabricus by manipulating larval and adult diet quality. We found that male and female life‐history traits exhibited similar responses to environmental fluctuations. 4. By contrast, the sexes exhibit different patterns of condition dependence in reproductive traits (i.e. the adult nutritional environment has a strong impact on the female lifetime reproductive success, whereas larval nutritional environment strongly affects the secondary sexual trait in males). 5. This difference in the plasticity of reproductive traits may lead to different selection pressures for each sex, even if both sexes develop and/or live in the same environment.  相似文献   

10.
As the evolutionary interests of males and females are frequently divergent, a trait value that is optimal for the fitness of one sex is often not optimal for the other. A shared genome also means that the same genes may underlie the same trait in both sexes. This can give rise to a form of sexual antagonism, known as intralocus sexual conflict (IASC). Here, a tug‐of‐war over allelic expression can occur, preventing the sexes from reaching optimal trait values, thereby causing sex‐specific reductions in fitness. For some traits, it appears that IASC can be resolved via sex‐specific regulation of genes that subsequently permits sexual dimorphism; however, it seems that whole‐genome resolution may be impossible, due to the genetic architecture of certain traits, and possibly due to the changing dynamics of selection. In this review, we explore the evolutionary mechanisms of, and barriers to, IASC resolution. We also address the broader consequences of this evolutionary feud, the possible interactions between intra‐ and interlocus sexual conflict (IRSC: a form of sexual antagonism involving different loci in each sex), and draw attention to issues that arise from using proxies as measurements of conflict. In particular, it is clear that the sex‐specific fitness consequences of sexual dimorphism require characterization before making assumptions concerning how this relates to IASC. Although empirical data have shown consistent evidence of the fitness effects of IASC, it is essential that we identify the alleles mediating these effects in order to show IASC in its true sense, which is a “conflict over shared genes.”  相似文献   

11.
The evolution of learning can be constrained by trade‐offs. As male and female life histories often diverge, the relationship between learning and fitness may differ between the sexes. However, because sexes share much of their genome, intersexual genetic correlations can prevent males and females from reaching their sex‐specific optima resulting in intralocus sexual conflict (IaSC). To investigate if IaSC constraints sex‐specific evolution of learning, we selected Caenorhabditis remanei nematode females for increased or decreased olfactory learning performance and measured learning, life span (in mated and virgin worms), reproduction, and locomotory activity in both sexes. Males from downward‐selected female lines had higher locomotory activity and longer virgin life span but sired fewer progeny than males from upward‐selected female lines. In contrast, we found no effect of selection on female reproduction and downward‐selected females showed higher locomotory activity but lived shorter as virgins than upward‐selected females. Strikingly, selection on learning performance led to the reversal of sexual dimorphism in virgin life span. We thus show sex‐specific trade‐offs between learning, reproduction, and life span. Our results support the hypothesis that selection on learning performance can shape the evolution of sexually dimorphic life histories via sex‐specific genetic correlations.  相似文献   

12.
Abstract The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata . There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.  相似文献   

13.
Males and females share most of the same genes, so selection in one sex will typically produce a correlated response in the other sex. Yet, the sexes have evolved to differ in a multitude of behavioral, morphological, and physiological traits. How did this sexual dimorphism evolve despite the presence of a common underlying genome? We investigated the potential role of gene duplication in the evolution of sexual dimorphism. Because duplication events provide extra genetic material, the sexes each might use this redundancy to facilitate sex‐specific gene expression, permitting the evolution of dimorphism. We investigated this hypothesis at the genome‐wide level in Drosophila melanogaster, using the presence of sex‐biased expression as a proxy for the sex‐specific specialization of gene function. We expected that if sexually antagonistic selection is a potent force acting upon individual genes, duplication will result in paralog families whose members differ in sex‐biased expression. Gene members of the same duplicate family can have different expression patterns in males versus females. In particular, duplicate pairs containing a male‐biased gene are found more frequently than expected, in agreement with previous studies. Furthermore, when the singleton ortholog is unbiased, duplication appears to allow one of the paralog copies to acquire male‐biased expression. Conversely, female‐biased expression is not common among duplicates; fewer duplicate genes are expressed in the female‐soma and ovaries than in the male‐soma and testes. Expression divergence exists more in older than in younger duplicates pairs, but expression divergence does not correlate with protein sequence divergence. Finally, genomic proximity may have an effect on whether paralogs differ in sex‐biased expression. We conclude that the data are consistent with a role of gene duplication in fostering male‐biased, but not female‐biased, gene expression, thereby aiding the evolution of sexual dimorphism.  相似文献   

14.
Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.  相似文献   

15.
Fluctuating selection is often thought to be ineffective in maintaining a genetic polymorphism except when generations overlap, for example when a seed bank causes a storage effect. Here, I demonstrate that fluctuating selection on sex‐limited traits automatically includes such a ‘storage effect’ because sex‐limited alleles are shielded from selection in the sex where they are not expressed. With analytical calculations and numerical simulations I show that fluctuating selection can maintain a genetic polymorphism in sex‐limited traits. Such a protected polymorphism can reduce the cost of sex when female‐limited traits are involved. But, this effect will probably be small compared to the two‐fold advantage of asexual reproduction unless many polymorphic loci interact or exceptionally strong environmental fluctuations are present. It is argued that genetic polymorphisms maintained by fluctuating selection on sex‐limited traits may partly explain the large genetic variance of traits under strong sexual selection.  相似文献   

16.
Oxidative stress was recently demonstrated to affect several fitness‐related traits and is now well recognized to shape animal life‐history evolution. However, very little is known about how much resistance to oxidative stress is determined by genetic and environmental effects and hence about its potential for evolution, especially in wild populations. In addition, our knowledge of phenotypic sexual dimorphism and cross‐sex genetic correlations in resistance to oxidative stress remains extremely limited despite important evolutionary implications. In free‐living great tits (Parus major), we quantified heritability, common environmental effect, sexual dimorphism and cross‐sex genetic correlation in offspring resistance to oxidative stress by performing a split‐nest cross‐fostering experiment where 155 broods were split, and all siblings (n = 791) translocated and raised in two other nests. Resistance to oxidative stress was measured as both oxidative damage to lipids and erythrocyte resistance to a controlled free‐radical attack. Both measurements of oxidative stress showed low additive genetic variances, high common environmental effects and phenotypic sexual dimorphism with males showing a higher resistance to oxidative stress. Cross‐sex genetic correlations were not different from unity, and we found no substantial heritability in resistance to oxidative stress at adult age measured on 39 individuals that recruited the subsequent year. Our study shows that individual ability to resist to oxidative stress is primarily influenced by the common environment and has a low heritability with a consequent low potential for evolution, at least at an early stage of life.  相似文献   

17.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

18.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

19.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

20.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号