首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.  相似文献   

2.
Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.  相似文献   

3.
4.
与PRRSV nsp11互作的宿主细胞蛋白鉴定及生物信息学分析   总被引:1,自引:0,他引:1  
靳换  李逸  姜楠  周磊  盖新娜  杨汉春  郭鑫 《微生物学通报》2017,44(12):2856-2870
【目的】研究猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)nsp11与宿主细胞蛋白之间的相互作用,对于揭示nsp11在病毒复制过程中发挥的功能至关重要。【方法】在病毒感染细胞的基础上,利用nsp11的单克隆抗体,采用免疫沉淀结合串联质谱的方法,筛选与PRRSV nsp11相互作用的宿主细胞蛋白,并对所筛选出的宿主细胞蛋白进行了GO注释、COG注释和KEGG代谢通路注释;选取筛选出的宿主细胞蛋白IRAK1,利用免疫共沉淀技术和激光共聚焦技术鉴定其与nsp11之间的相互作用。【结果】与空白对照组相比,病毒感染组中出现3条差异带;经质谱分析共筛选得到了201个与nsp11相互作用的宿主细胞蛋白,分别与蛋白质代谢、细胞信号通路转导以及病原致病性等密切相关;在生物信息学分析的基础上,实验验证了nsp11确与宿主细胞蛋白IRAK1进行相互作用。【结论】鉴定出与PRRSV nsp11相互作用的宿主细胞蛋白,生物信息学分析显示它们在病毒的复制和致病过程中发挥重要作用。研究结果为探究nsp11的生物学功能指明了方向,也为研究宿主细胞蛋白与病毒蛋白间的相互作用及其调控病毒复制和致病性的分子机制奠定了基础。  相似文献   

5.
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.  相似文献   

6.
ABSTRACT: BACKGROUND: Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. RESULTS: Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. CONCLUSION: NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin.  相似文献   

7.
Persistent hepatitis C virus (HCV) infection can cause liver cirrhosis and hepatocellular carcinoma. Non-structural protein 3 (NS3), an important part of HCV, has been implicated in the life cycle of the virus and interacts with host cellular proteins. In this study, we investigated the effect of NS3 protein on cell tranformation and related protein alteration in human hepatocyte QSG7701 cells. The results indicated that stable expression of the NS3 protein in QSG7701 cells induced transformed characters with reduced population doubling time, anchorage-independent growth and tumor development. Fifteen differentially- expressed proteins were separated and identified using 2-D electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Western blot analysis confirmed that the increase of phospho-p44/42 and phospho-p38 proteins was associated with transformed cells. These results supported the view that HCV NS3 protein plays a transforming role and provided some clues to elucidate the carcinogenesis mechanism of HCV-related hepatocellular carcinoma.  相似文献   

8.
NS1 of influenza A virus is a key multifunctional protein that plays various roles in regulating viral replication mechanisms, host innate/adaptive immune responses, and cellular signalling pathways. These functions rely on its ability to participate in a multitude of protein-protein and protein-RNA interactions. To gain further insight into the role of NS1, a tandem affinity purification (TAP) method was utilized to find unknown interaction partner of NS1. The protein complexes of NS1 and its interacting partner were purified from A549 cell using TAP-tagged NS1 as bait, and co-purified cellular factors were identified by mass spectrometry (MS). We identified cellular β-tubulin as a novel interaction partner of NS1. The RNA-binding domain of NS1 interacts with β-tubulin through its RNA-binding domain, as judged by a glutathione S-transferase (GST) pull-down assay with the GST-fused functional domains of NS1. Immunofluorescence analysis further revealed that NS1 with β-tubulin co-localized in the nucleus. In addition, the disruption of the microtubule network and apoptosis were also observed on NS1-transfected A549 cells. Our findings suggest that influenza A virus may utilize its NS1 protein to interact with cellular β-tubulin to further disrupt normal cell division and induce apoptosis. Future work will illustrate whether this interaction is uniquely specific to the 2009 pandemic H1N1 virus.  相似文献   

9.
Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.  相似文献   

10.
The nonstructural NS2 proteins of the prototype strain of minute virus of mice (MVMp) were previously shown to be involved in parvoviral DNA amplification as well as in efficient virus production in a host cell-specific manner (L. K. Naeger, N. Salomé, and D. J. Pintel, J. Virol. 67:1034-1043, 1993). NS2 polypeptides were also reported to participate in the cytotoxic activity of parvoviruses (C. Legrand, J. Rommelaere, and P. Caillet-Fauquet, Virology 195:149-155, 1993), for which transformed cells are preferential targets. To identify cellular partners of NS2 proteins, coimmunoprecipitation experiments were performed with various antibodies directed against the parvoviral products. Two cellular proteins with molecular masses of 30 and 32 kDa were found to associate in vivo with the NS2 polypeptides. From amino acid sequence homology, these NS2 partners were assigned to the 14-3-3 family of cellular proteins, showing at least partial identity with the epsilon and beta or zeta 14-3-3 isoforms. In agreement with this assignment, NS2-30/32-kDa protein immune complexes displayed an activating function for exoenzyme S in vitro, a hallmark of 14-3-3 polypeptides. Interactions with 14-3-3 proteins did not appear sufficient for NS2 functions, since they were not disrupted by NS2 C-terminal modifications that impaired virus replication. Binding of NS2 to 14-3-3 proteins was detected in various cells of mouse, rat, hamster, monkey, and human origin, irrespective of NS2 dispensability and host cell transformation or permissiveness. The ubiquitous 14-3-3 proteins were recently reported to associate with several other cellular or viral polypeptides involved in signal transduction and/or cell cycle regulation pathways (A. Aitken, Trends Biochem. Sci. 20:95-97, 1995). The NS2 products may connect with one of these pathways through their interaction with specific 14-3-3 polypeptides.  相似文献   

11.
Influenza A virus is an important pathogenic virus known to induce host cell cycle arrest in G0/G1 phase and create beneficial conditions for viral replication. However, how the virus achieves arrest remains unclear. We investigated the mechanisms underlying this process and found that the nonstructural protein 1 (NS1) is required. Based on this finding, we generated a viable influenza A virus (H1N1) lacking the entire NS1 gene to study the function of this protein in cell cycle regulation. In addition to some cell cycle regulators that were changed, the concentration and activity of RhoA protein, which is thought to be pivotal for G1/S phase transition, were also decreased with overexpressing NS1. And in the meantime, the phosphorylation level of cell cycle regulator pRb, downstream of RhoA kinase, was decreased in an NS1-dependent manner. These findings indicate that the NS1 protein induces G0/G1 cell cycle arrest mainly through interfering with the RhoA/pRb signaling cascade, thus providing favorable conditions for viral protein accumulation and replication. We further investigated the NS1 protein of avian influenza virus (H5N1) and found that it can also decrease the expression and activity of RhoA, suggesting that the H5N1 virus may affect the cell cycle through the same mechanism. The NS1/RhoA/pRb cascade, which can induce the G0/G1 cell cycle arrest identified here, provides a unified explanation for the seemingly different NS1 functions involved in viral replication events. Our findings shed light on the mechanism of influenza virus replication and open new avenues for understanding the interaction between pathogens and hosts.  相似文献   

12.
Lai CK  Jeng KS  Machida K  Lai MM 《Journal of virology》2008,82(17):8838-8848
The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.  相似文献   

13.
【背景】猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)膜蛋白(M)在病毒粒子的组装、膜融合和病毒复制等方面具有重要的作用,但M蛋白与宿主细胞的互作机制尚不清楚。【目的】利用免疫沉淀技术和液质联用技术筛选细胞内与PEDVM蛋白相互作用的蛋白,为揭示M蛋白在病毒增殖过程中发挥的功能提供研究基础。【方法】将MOI=0.1的PEDV DR13疫苗株接种于长成单层的Vero细胞,感染36 h后,收集细胞并进行裂解。利用抗M的单克隆抗体沉淀与M相互作用蛋白复合物,通过液相色谱串联质谱(LC-MS/MS)进行鉴定并利用细胞功能富集分析(Gene ontology,GO)对感染组鉴定到的细胞蛋白进行分析,确定两个细胞内源性蛋白为候选蛋白,进行免疫共沉淀(Co-IP)验证和共定位分析。【结果】基于鉴定蛋白的肽段数的方法分析显示,感染组与对照组相比,鉴定了218个与M蛋白相互作用的细胞内源性蛋白,分别与蛋白质合成、代谢、细胞信号通路转导等密切相关,选择细胞分裂周期蛋白42 (Cell division cycle 42,CDC42)、真核翻译起始因子3亚基L蛋白(eIF3L)为候选蛋白进行Co-IP(Co-immunoprecipitation)验证和共定位分析,结果证实CDC42、eIF3L蛋白分别与M蛋白在细胞内存在相互作用。【结论】鉴定出PEDV M蛋白能够与宿主细胞CDC42和eIF3L蛋白相互作用,并鉴定出其他可能与M蛋白发生相互作用的宿主蛋白60个,为开展PEDV与宿主细胞蛋白相互作用研究提供了重要理论依据。  相似文献   

14.
15.
Avian influenza viruses belong to the genus influenza A virus of the family Orthomyxoviridae. The influenza virus consists of eight segmented minus stranded RNA that encode 11 known proteins. Among the 11 viral proteins, NS1 (non-structural protein 1, encoded on segment 8) has been implicated in the regulation of several important intra-cellular functions.In this report, we investigated the functional interaction of NS1 with serine threonine kinase Akt, a core intra-cellular survival regulator. In co-immunoprecipitation assays and GST pull-down assays, NS1 directly interacted with Akt. The interaction was mediated primarily through the Akt-PH (Pleckstrin Homology) domain and the RNA-binding domain of NS1. NS1 preferentially interacted with phosphorylated Akt, but not with non-phosphorylated Akt. Functionally, the NS1-Akt interaction enhanced Akt activity both in the intra-cellular context and in in vitro Akt kinase assays. Confocal microscopic analysis revealed that phosphorylated Akt interacted with NS1 during the interphase of the cell cycle predominantly within the nucleus. Finally, mass spectrometric analysis demonstrated the position at Thr215 of NS1 protein is primary phosphorylation target site through Akt activation. The results together supported the functional importance of influenza virus NS1 with Akt, a core intra-cellular survival regulator.  相似文献   

16.
禽流感病毒NS1蛋白对细胞的影响   总被引:1,自引:0,他引:1  
NS1蛋白为流感病毒非结构蛋白,只在病毒侵入宿主细胞后产生.目前NS1蛋白对细胞整体水平上的作用仍不清楚,为了解NS1蛋白在病毒感染细胞中的作用,构建了重组质粒pCMV-myc-NS1并将其转染A549细胞,利用双向电泳技术检测了受NS1蛋白调控的宿主蛋白,以期从蛋白质组水平上研究禽流感病毒与宿主细胞间的相互作用.同时,还检测了转染NS1对细胞增殖和细胞周期的影响.结果显示,NS1在细胞中的表达,能够明显引起宿主细胞代谢的变化,并通过阻滞细胞周期的正常进行而减缓细胞的增殖.  相似文献   

17.
Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of approximately 3,200 proteins in the CD4(+) CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.  相似文献   

18.
Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells after accumulation of host replication machinery. Tomato golden mosaic virus (TGMV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) encode a protein, RepAC1 (or Rep), that is essential for viral replication. Rep/RepAC1 is an oligomeric protein that binds to double-stranded DNA, catalyzes cleavage and ligation of single-stranded DNA, and is sufficient for host induction. It also interacts with several host proteins, including the cell cycle regulator, retinoblastoma, and essential components of the cell DNA replication machinery, like proliferating nuclear cell antigen (PCNA) and RFC-1. To identify other cellular proteins that interact with Rep/RepAC1 protein, a Nicotiana benthamiana cDNA library was screened with a yeast two-hybrid assay. The host cell sumoylation enzyme, NbSCE1 (N. benthamiana SUMO-conjugating enzyme, homolog to Saccharomyces cerevisiae UBC9), was found to interact specifically with RepAC1. Mapping studies localized the interaction to the N-terminal half of RepAC1. Effects on geminivirus replication were observed in transgenic plants with altered levels of SUMO, the substrate for UBC9.  相似文献   

19.
Infection with hepatitis C virus (HCV) is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3) is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5′(3′)-deoxyribonucleotidase (cdN, dNT-1) was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.  相似文献   

20.
Classical swine fever (CSF) is a contagious disease with a high mortality rate and is caused by classical swine fever virus (CSFV). CSFV non-structural protein 4B (NS4B) plays a crucial role in CSFV replication and pathogenicity. However, precisely how NS4B exerts these functions remains unknown, especially as there are no reports relating to potential cellular partners of CSFV NS4B. Here, a yeast two-hybrid (Y2H) system was used to screen the cellular proteins interacting with NS4B from a porcine alveolar macrophage (PAM) cDNA library. The protein screen along with alignment using the NCBI database revealed 14 cellular proteins that interact with NS4B: DDX39B, COX7C, FTH1, MAVS, NR2F6, RPLP1, PSMC4, FGL2, MKRN1, RPL15, RPS3, RAB22A, TP53BP2 and TBK1. These proteins mostly relate to oxidoreductase activity, signal transduction, localization, biological regulation, catalytic activity, transport and metabolism by GO categories. Tank-binding kinase 1 (TBK1) was chosen for further confirmation. The NS4B-TBK1 interaction was further confirmed by subcellular co-location, co-immunoprecipitation and glutathione S-transferase pull-down assays. This study offers a theoretical foundation for further understanding of the diversity of NS4B functions in relation to viral infection and subsequent pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号