首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection ('excess clustering') and also tend to cluster with other recent HIV infections rather than chronic, established infections ('excess co-clustering'), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled.  相似文献   

2.
HIV-1 sequences in intravenous drug user (IDU) networks are highly homogenous even after several years, while this is not observed in most sexual epidemics. To address this disparity, we examined the human immunodeficiency virus type 1 (HIV-1) evolutionary rate on the population level for IDU and heterosexual transmissions. All available HIV-1 env V3 sequences from IDU outbreaks and heterosexual epidemics with known sampling dates were collected from the Los Alamos HIV sequence database. Evolutionary rates were calculated using phylogenetic trees with a t test root optimization of dated samples. The evolutionary rate of HIV-1 subtype A1 was found to be 8.4 times lower in fast spread among IDUs in the former Soviet Union (FSU) than in slow spread among heterosexual individuals in Africa. Mixed epidemics (IDU and heterosexual) showed intermediate evolutionary rates, indicating a combination of fast- and slow-spread patterns. Hence, if transmissions occur repeatedly during the initial stage of host infection, before selective pressures of the immune system have much impact, the rate of HIV-1 evolution on the population level will decrease. Conversely, in slow spread, where HIV-1 evolves under the pressure of the immune system before a donor infects a recipient, the virus evolution at the population level will increase. Epidemiological modeling confirmed that the evolutionary rate of HIV-1 depends on the rate of spread and predicted that the HIV-1 evolutionary rate in a fast-spreading epidemic, e.g., for IDUs in the FSU, will increase as the population becomes saturated with infections and the virus starts to spread to other risk groups.  相似文献   

3.
Epidemiological processes leave a fingerprint in the pattern of genetic structure of virus populations. Here, we provide a new method to infer epidemiological parameters directly from viral sequence data. The method is based on phylogenetic analysis using a birth-death model (BDM) rather than the commonly used coalescent as the model for the epidemiological transmission of the pathogen. Using the BDM has the advantage that transmission and death rates are estimated independently and therefore enables for the first time the estimation of the basic reproductive number of the pathogen using only sequence data, without further assumptions like the average duration of infection. We apply the method to genetic data of the HIV-1 epidemic in Switzerland.  相似文献   

4.
Although several virologic and immunologic factors associated with an increased risk of perinatal human immunodeficiency virus type 1 (HIV-1) transmission have been described, the mechanism of mother-to-child transmission is still unclear. More specifically, the question of whether selective pressures influence the transmission remains unanswered. The aim of this study was to assess the genetic diversity of the transmitted virus after in utero transmission and after peripartum transmission and to compare the viral heterogeneity in the child with the viral heterogeneity in the mother. To allow a very accurate characterization of the viral heterogeneity in a single sample, limiting-dilution sequencing of a 1016-bp fragment of the env gene was performed. Thirteen children were tested, including 6 with in utero infections and 7 with peripartum infections. Samples were taken the day after birth and at the ages of 6 and 14 weeks. A homogeneous virus population was seen in six (46.2%) infants, of whom two were infected in utero and four were infected peripartum. A more heterogeneous virus population was detected in seven infants (53.8%), four infected in utero and three infected peripartum. The phylogenetic trees of the mother-child pairs presented a whole range of different tree topologies and showed infection of the child by one or more maternal variants. In conclusion, after HIV-1 transmission from mother to child a heterogeneous virus population was detected in approximately one-half of the children examined. Heterogeneous virus populations were found after peripartum infection as well as after in utero infection. Phylogenetic tree topologies argue against selection processes as the major mechanism driving mother-to-child transmission but support the hypothesis that virus variability is mainly driven by the inoculum level and/or exposure time.  相似文献   

5.
Chen JH  Wong KH  Chan KC  To SW  Chen Z  Yam WC 《PloS one》2011,6(9):e25286
The men-having-sex-with-men (MSM) population has become one of the major risk groups for HIV-1 infection in the Asia Pacific countries. Hong Kong is located in the centre of Asia and the transmission history of HIV-1 subtype B transmission among MSM remained unclear. The aim of this study was to investigate the transmission dynamics of HIV-1 subtype B virus in the Hong Kong MSM population. Samples of 125 HIV-1 subtype B infected MSM patients were recruited in this study. Through this study, the subtype B epidemic in the Hong Kong MSM population was identified spreading mainly among local Chinese who caught infection locally. On the other hand, HIV-1 subtype B infected Caucasian MSM caught infection mainly outside Hong Kong. The Bayesian phylogenetic analysis also indicated that 3 separate subtype B epidemics with divergence dates in the 1990s had occurred. The first and latest epidemics were comparatively small-scaled; spreading among the local Chinese MSM while sauna-visiting was found to be the major sex partner sourcing reservoir for the first subtype B epidemic. However, the second epidemic was spread in a large-scale among local Chinese MSM with a number of them having sourced their sex partners through the internet. The epidemic virus was estimated to have a divergence date in 1987 and the infected population in Hong Kong had a logistic growth throughout the past 20 years. Our study elucidated the evolutionary and demographic history of HIV-1 subtype B virus in Hong Kong MSM population. The understanding of transmission and growth model of the subtype B epidemic provides more information on the HIV-1 transmission among MSM population in other Asia Pacific high-income countries.  相似文献   

6.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.  相似文献   

7.
Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation.  相似文献   

8.
In order to elucidate the molecular mechanisms involved in human immunodeficiency virus type 1 (HIV-1) mother-to-child transmission, we have analyzed the genetic variation within the V3 hypervariable domain and flanking regions of the HIV-1 envelope gene in four mother-child transmission pairs. Phylogenetic analysis and amino acid sequence comparison were performed on cell-associated viral sequences derived from maternal samples collected at different time points during pregnancy, after delivery, and from child samples collected from the time of birth until the child was approximately 1 year of age. Heterogeneous sequence populations were observed to be present in all maternal samples collected during pregnancy and postdelivery. In three newborns, viral sequence populations obtained within 2 weeks after birth revealed a high level of V3 sequence variability. In contrast, V3 sequences obtained from the fourth child (diagnosed at the age of 1 month) displayed a more restricted heterogeneity. The phylogenetic analysis performed for each mother-child sequence set suggested that several mechanisms may potentially be involved in HIV-1 vertical transmission. For one pair, child sequences were homogeneous and clustered in a single branch within the phylogenetic tree, consistent with selective transmission of a single maternal variant. For the other three pairs, the child sequences were more heterogeneous and clustered in several separate branches within the tree. In these cases, it appeared likely that more than one maternal variant was responsible for infection of the child. In conclusion, no single mechanism can account for mother-to-child HIV-1 transmission; both the selective transmission of a single maternal variant and multiple transmission events may occur.  相似文献   

9.
10.
Attempts to estimate the time of origin of human immunodeficiency virus (HIV)-1 by using phylogenetic analysis are seriously flawed because of the unequal evolutionary rates among different viral lineages. Here, we report a new method of molecular clock analysis, called Site Stripping for Clock Detection (SSCD), which allows selection of nucleotide sites evolving at an equal rate in different lineages. The method was validated on a dataset of patients all infected with hepatitis C virus in 1977 by the same donor, and it was able to date exactly the known origin of the infection. Using the same method, we calculated that the origin of HIV-1 group M radiation was in the 1930s. In addition, we show that the coalescence time of the simian ancestor of HIV-1 group M and its closest related cpz strains occurred around the end of the XVII century, a date that could be considered the upper limit to the time of simian-to-human transmission of HIV-1 group M. The results show also that SSCD is an easy-to-use method of general applicability in molecular evolution to calibrate clock-like phylogenetic trees.  相似文献   

11.
The rate of development of disease varies considerably among human immunodeficiency virus type 1 (HIV-1)-infected children. The reasons for these observed differences are not clearly understood but most probably depend on the dynamic interplay between the HIV-1 quasispecies virus population and the immune constraints imposed by the host. To study the relationship between disease progression and genetic diversity, we analyzed the evolution of viral sequences within six perinatally infected children by examining proviral sequences spanning the C2 through V5 regions of the viral envelope gene by PCR of blood samples obtained at sequential visits. PCR product DNAs from four sample time points per child were cloned, and 10 to 13 clones from each sample were sequenced. Greater genetic distances relative to the time of infection were found for children with low virion-associated RNA burdens and slow progression to disease relative to those found for children with high virion-associated RNA burdens and rapid progression to disease. The greater branch lengths observed in the phylogenetic reconstructions correlated with a higher accumulation rate of nonsynonymous base substitutions per potential nonsynonymous site, consistent with positive selection for change rather than a difference in replication kinetics. Viral sequences from children with slow progression to disease also showed a tendency to form clusters that associated with different sampling times. These progressive shifts in the viral population were not found in viral sequences from children with rapid progression to disease. Therefore, despite the HIV-1 quasispecies being a diverse, rapidly evolving, and competing population of genetic variants, different rates of genetic evolution could be found under different selective constraints. These data suggest that the evolutionary dynamics exhibited by the HIV-1 quasispecies virus populations are compatible with a Darwinian system evolving under the constraints of natural selection.  相似文献   

12.
13.
We previously demonstrated that human immunodeficiency virus type 1 (HIV-1) infection is nonrandom and that double infection occurs more frequently than predicted from random events. To probe the possible mechanisms for nonrandom infection, we examined the role of HIV-1 entry pathways by using viruses pseudotyped with either CCR5-tropic HIV-1 Env or vesicular stomatitis virus G protein (VSV G). These two proteins use different receptors and entry pathways. We found that regardless of the protein used, double infection occurred more frequently than random events, indicating nonrandom HIV-1 infection in both entry pathways. However, the frequency of double infection differed significantly, depending on the envelope protein. In primary CD4(+) T cells, double infection occurred most frequently when both viruses had CCR5-tropic HIV-1 Env and least frequently when the two viruses had different envelopes. These results indicated that the preference in virus entry was a significant but not the only factor contributing to nonrandom double infection. Furthermore, we demonstrated that the CD4 expression level in primary T cells affects their susceptibility to CCR5-tropic HIV-1 infection but not VSV G-pseudotyped HIV-1 infection. We have also examined infection with two viruses pseudotyped with CCR5- or CXCR4-tropic HIV-1 Env and have found that double infection occurred more frequently than random events. These results indicate that coreceptor usage is not a barrier to recombination between the two virus populations. In our previous study, we also demonstrated nonrandom double infection via dendritic cell (DC)-mediated HIV-1 transmission. To test our hypothesis that multiple HIV-1 virions are transmitted during DC-T-cell contact, we used two populations of DCs, each capturing one vector virus, and added both DC populations to T cells. We observed a decreased frequency of double infection compared with experiments in which DCs captured both viruses simultaneously. Therefore, these results support our hypothesis that multiple virions are transmitted from DCs to T cells during cell-mediated HIV-1 transmission.  相似文献   

14.

Background

Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs) and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission.

Methodology and Findings

The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS) compared to nonsynonymous (dN) substitutions evident (dN/dS<1).

Conclusions

Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be preferentially transmitted during HIV-1 subtype C perinatal transmission. In addition, our findings also indicated that purifying selection appears to predominate in shaping the early intrahost evolution of HIV-1 subtype C envelope sequences.  相似文献   

15.
During cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), many viral particles can be simultaneously transferred from infected to uninfected CD4 T cells through structures called virological synapses (VS). Here we directly examine how cell-free and cell-to-cell infections differ from infections initiated with cell-free virus in the number of genetic copies that are transmitted from one generation to the next, i.e., the genetic inheritance. Following exposure to HIV-1-expressing cells, we show that target cells with high viral uptake are much more likely to become infected. Using T cells that coexpress distinct fluorescent HIV-1 variants, we show that multiple copies of HIV-1 can be cotransmitted across a single VS. In contrast to cell-free HIV-1 infection, which titrates with Poisson statistics, the titration of cell-associated HIV-1 to low rates of overall infection generates a constant fraction of the newly infected cells that are cofluorescent. Triple infection was also readily detected when cells expressing three fluorescent viruses were used as donor cells. A computational model and a statistical model are presented to estimate the degree to which cofluorescence underestimates coinfection frequency. Lastly, direct detection of HIV-1 proviruses using fluorescence in situ hybridization confirmed that significantly more HIV-1 DNA copies are found in primary T cells infected with cell-associated virus than in those infected with cell-free virus. Together, the data suggest that multiploid inheritance is common during cell-to-cell HIV-1 infection. From this study, we suggest that cell-to-cell infection may explain the high copy numbers of proviruses found in infected cells in vivo and may provide a mechanism through which HIV preserves sequence heterogeneity in viral quasispecies through genetic complementation.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) exists as a complex population of multiple genotypic variants in persons with chronic infection. However, acute HIV-1 infection via sexual transmission is a low-probability event in which there is thought to be low genetic complexity in the initial inoculum. In order to assess the viral complexity present during primary HIV-1 infection, the V1/V2 and V3 variable regions of the env gene were examined by using a heteroduplex tracking assay (HTA) capable of resolving these genotypic variants. Blood plasma samples from 26 primary HIV-1-infected subjects were analyzed for their level of diversity. Half of the subjects had more than one V1/V2 viral variant during primary infection, indicating the frequent transmission of multiple variants. This observation is inconsistent with the idea of infrequent transmission based on a small transmitting inoculum of cell-free virus. In chronically infected subjects, the complexity of the viral populations was even greater in both the V1/V2 and the V3 regions than in acutely infected subjects, indicating that in spite of the presence of multiple variants in acute infection, the virus does pass through a genetic bottleneck during transmission. We also examined how well the infecting virus penetrated different anatomical compartments by using the HTA. Viral variants detected in blood plasma were compared to those detected in seminal plasma and/or cerebral spinal fluid of six individuals. The virus in each of these compartments was to a large extent identical to virus in blood plasma, a finding consistent with rapid penetration of the infecting variant(s). The low-probability transmission of multiple variants could be the result of transient periods of hyperinfectiousness or hypersusceptibility. Alternatively, the inefficient transfer of a multiply infected cell could account for both the low probability of transmission and the transfer of multiple variants.  相似文献   

17.
We analyzed neutralization sensitivity and genetic variation of transmitted subtype B human immunodeficiency virus type 1 (HIV-1) in eight recently infected men who have sex with men and the virus from the six subjects who infected them. In contrast to reports of heterosexual transmission of subtype C HIV-1, in which the transmitted virus appears to be more neutralization sensitive, we demonstrate that in our study population, relatively few phenotypic changes in neutralization sensitivity or genotypic changes in envelope occurred during transmission of subtype B HIV-1. We suggest that limited genetic variation within the infecting host reduces the likelihood of selective transmission of neutralization-sensitive HIV.  相似文献   

18.
19.
The World Health Organization estimates that by year 2000, 10 million children will be infected with human immunodeficiency virus type 1 (HIV-1) at birth and will subsequently develop AIDS. Perinatally acquired infections account for the majority of all HIV-1 cases in children, with an estimated mother-to-infant transmission rate of more than 30%. It is not clear why more than half of the children born to HIV-1-infected mothers are uninfected. Maternal transmission of HIV-1 occurs at three levels: prepartum, intrapartum, and postpartum. Several maternal parameters including advanced clinical stages of the mother, low CD4+ lymphocyte counts, maternal immune response to HIV-1, recent infection, high level of circulating HIV-1, and maternal disease progression have been implicated in an increased risk of mother-to-infant transmission of HIV-1. Viral factors influencing mother-to-infant transmission are not known. Furthermore, several other factors such as acute infection during pregnancy, presence of other sexually transmitted diseases (STD) or other chronic infections, vaginal bleeding, disruption of placental integrity, premature rupture of membrane (PROM), and preterm PROM have been associated with mother-to-infant transmission of HIV-1. In addition, tobacco and cigarette smoking during pregnancy have been shown to triple the rate of maternal transmission of HIV-1. The AIDS Clinical Trial Group (ACTG) suggested that zidovudine (ZDV) can reduce the rate of mother-to-infant transmission of HIV-1 if administered to HIV-1-infected pregnant women with CD4 counts greater than 200. Moreover, this study failed to take into consideration several factors that may influence maternal transmission of HIV-1. However, the molecular mechanisms involved in mother-to-infant transmission of HIV-1 are not understood, which makes it more difficult to define strategies for effective treatment and prevention of HIV-1 infection in children. Several groups are engaged in the understanding of the molecular and biological properties of HIV-1 influencing mother-to-infant transmission. Results from my and several other laboratories suggest that the minor genotypes, subtypes, or variants of HIV-1 found in a genetically heterogeneous virus population of infected mothers are transmitted to their infants. The minor HIV-1 genotype predominates initially as a homogeneous population in the infant and then becomes diverse as the infant matures. Furthermore, transmission of a major or multiple HIV-1 genotypes from mother to infant has been reported. Taken together, these results strongly suggest that there are differences among the molecular and biological properties of the maternal variants that are transmitted to the infants and the maternal variants that are not transmitted to the infants. The understanding of the molecular and biological properties of the transmitted viruses will enable researchers to target a particular subtype in the mothers that is transmitted to the infants.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) genetic diversity is a major obstacle for the design of a successful vaccine. Certain viral polymorphisms encode human leukocyte antigen (HLA)-associated immune escape, potentially overcoming limited vaccine protection. Although transmission of immune escape variants has been reported, the overall extent to which this phenomenon occurs in populations and the degree to which it contributes to HIV-1 viral evolution are unknown. Selection on the HIV-1 env gene at transmission favors neutralization-sensitive variants, but it is not known to what degree selection acts on the internal HIV-1 proteins to restrict or enhance the transmission of immune escape variants. Studies have suggested that HLA class I may determine susceptibility to HIV-1 infection, but a definitive role for HLA at transmission remains unproven. Comparing populations of acute seroconverters and chronically infected patients, we found no evidence of selection acting to restrict transmission of HIV-1 variants. We found that statistical associations previously reported in chronic infection between viral polymorphisms and HLA class I alleles are not present in acute infection, suggesting that the majority of viral polymorphisms in these patients are the result of transmission rather than de novo adaptation. Using four episodes of HIV-1 transmission in which the donors and recipients were both sampled very close to the time of infection we found that, despite a transmission bottleneck, genetic variants of HIV-1 infection are transmitted in a frequency-dependent manner. As HIV-1 infections are seeded by unique donor-adapted viral variants, each episode is a highly individual antigenic challenge. Host-specific, idiosyncratic HIV-1 antigenic diversity will seriously tax the efficacy of immunization based on consensus sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号