首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Three sibling species of mosquitoes of the Anopheles gambiae complex are found in the Senegal River Basin: An. melas Theobald, An. gambiae Giles and An. arabiensis Patton. 2. An. melas is restricted to the river delta and environs where saltwater breeding places are present. 3. An. gambiae and An. arabiensis are sympatric in the study area; An. arabiensis predominates in coastal zones where it breeds also during the dry season; An. gambiae predominates in inland areas where breeding is mostly restricted to the rainy season (July-September). 4. An. arabiensis is chromosomally polymorphic all over the study area, with much variation of inversion frequencies, particularly for the 2Ra arrangement. 5. An. gambiae is characterized by a very high frequency of the 2Rb-2La inversion arrangement which is typical of the Savanna chromosomal form.  相似文献   

2.
Knowledge of population structure in a major vector species is fundamental to an understanding of malaria epidemiology and becomes crucial in the context of genetic control strategies that are being developed. Despite its epidemiological importance, the major African malaria vector Anopheles funestus has received far less attention than members of the Anopheles gambiae complex. Previous chromosomal data have shown a high degree of structuring within populations from West Africa and have led to the characterization of two chromosomal forms, "Kiribina" and "Folonzo." In Central Africa, few data were available. We thus undertook assessment of genetic structure of An. funestus populations from Cameroon using chromosomal inversions and microsatellite markers. Microsatellite markers revealed no particular departure from panmixia within each local population and a genetic structure consistent with isolation by distance. However, cytogenetic studies demonstrated high levels of chromosomal heterogeneity, both within and between populations. Distribution of chromosomal inversions was not random and a cline of frequency was observed, according to ecotypic conditions. Strong deficiency of heterokaryotypes was found in certain localities in the transition area, indicating a subdivision of An. funestus in chromosomal forms. An. funestus microsatellite genetic markers located within the breakpoints of inversions are not differentiated in populations, whereas in An. gambiae inversions can affect gene flow at marker loci. These results are relevant to strategies for control of malaria by introduction of transgenes into populations of vectors.  相似文献   

3.
We report the identification of genomic sequences in various anopheline mosquitoes (family Culicidae: suborder Nematocera: order Diptera) showing homology to the class II, short inverted-terminal-repeat (ITR) transposable element P from Drosophila melanogaster (family Drosophilidae; suborder Brachycera: order Diptera). Anopheles gambiae appears to have at least six distinct P elements. Other anopheline species, including four additional members of the An. gambiae species complex (An. arabiensis, An. merus, An. melas and An. quadriannulatus), Anopheles stephensi (all subgenus Cellia), An. quadrimaculatus (subgenus Anopheles) and Anopheles albimanus (subgenus Nyssorhynchus) also possess P elements similar to those found in An. gambiae. Ten distinct P element types were identified in the genus Anopheles. At least two of the An. gambiae elements appears to be intact and potentially functional. Phylogenetic analysis of the anopheline P elements reveals them to belong to a distinctly different clade from the brachyceran P elements.  相似文献   

4.
Zhong D  Temu EA  Guda T  Gouagna L  Menge D  Pai A  Githure J  Beier JC  Yan G 《Genetics》2006,172(4):2359-2365
Anopheles gambiae is a major malaria vector in Africa and a popular model species for a variety of ecological, evolutionary, and genetic studies on vector control. Genetic manipulation of mosquito vectorial capacity is a promising new weapon for the control of malaria. However, the release of exotic transgenic mosquitoes will bring in novel alleles in addition to the parasite-inhibiting genes, which may have unknown effects on the local population. Therefore, it is necessary to develop methodologies that can be used to evaluate the spread rate of introduced genes in A. gambiae. In this study, the effects and dynamics of genetic introgression between two geographically distinct A. gambiae populations from western Kenya (Mbita) and eastern Tanzania (Ifakara) were investigated with amplified fragment length polymorphisms (AFLPs) and microsatellite markers. Microsatellites and polymorphic cDNA markers revealed a large genetic differentiation between the two populations (average F(ST) = 0.093, P < 0.001). When the two strains were crossed in random mating between the two populations, significant differences in the rate of genetic introgression were found in the mixed populations. Allele frequencies of 18 AFLP markers (64.3%) for Mbita and of 26 markers (92.9%) for Ifakara varied significantly from F5 to F20. This study provides basic information on how a mosquito release program would alter the genetic makeup of natural populations, which is critical for pilot field testing and ecological risk evaluation of transgenic mosquitoes.  相似文献   

5.
Abstract. The name Anopheles bwambae is proposed for the taxon previously called species D of the An.gambiae complex. This sibling species is known only from the vicinity of Buranga hot springs in Bwamba County, Toro District, Uganda, where it breeds in brackish water from geothermal springs together with other halophilic mosquitoes (Ae.albocephalus, Ae.natwnius, Cx.tenagius). An.bwambae adults inhabit the Semliki Forest, where the natural hosts are unknown, but they also enter houses in nearby villages and bite human beings avidly. Plasmodium sporozoites and developing larvae of Wuchereria bancrofti were found in An.bwambae females, so it is assumed that this species of vector contributes locally to transmission of human malaria and filariasis (together with An.funestus, An.gambiae and An.arabiensis). The specific diagnosis of An.bwambae depends upon (i) the presence of fixed inversion 3La and polymorphic inversions 2R1 and 3Rb of the karyotype, as interpreted from ovarian polytene chromosomes, (ii) a fast fixed allozyme of super-oxide dismutase (Sod-105), (iii) female palpi with broader pale apical band and narrower dark sub-apical band than for other sibling species. Cytotaxonomically An.bwambae has the same X-chromosome banding pattern as An.quadriannulatus and An.melas; the latter also has autosomal inversion 3La and therefore appears to be the sister-species of An.bwambae. An identification key is given to the six named sibling species of the An.gambiae complex.  相似文献   

6.
Polytene chromosome studies on the member species of the Anopheles gambiae complex in The Gambia and surrounding areas in Senegal led to comparative observations on bionomics of sympatric populations of An. melas and An. gambiae. Moreover, inversion polymorphisms have been analyzed in An. melas and their possible relationships with behavioural variations in endophily and anthropophily have been considered. An. melas shows a remarkably short dispersal from typical larval breeding places associated with mangrove swamps and it is definitely more zoophilic and exophilic than An. gambiae. Only a very small fraction of An. melas biting outdoor on animals rests indoors and consequently the human blood index is largely overestimated if based on the examination of house samples alone. Differences in the frequencies of 2Rn inversion karyotypes of An. melas were observed between parallel samples obtained from animal shelters and houses, from night catches on man outdoor and from night catches on main indoor and on animal outdoor. Further differences were shown by blood meal identification between human and animal fed subsamples from the same house resting samples. Non-uniform feeding and/or resting behaviour between carriers of alternative 2Rn inversion karyotypes is postulated to explain these data.  相似文献   

7.
Slotman M  Della Torre A  Powell JR 《Genetics》2004,167(1):275-287
Male hybrids between Anopheles gambiae and An. arabiensis suffer from hybrid sterility, and inviability effects are sometimes present as well. We examined the genetic basis of these reproductive barriers between the two species, using 21 microsatellite markers. Generally, recessive inviability effects were found on the X chromosome of gambiae that are incompatible with at least one factor on each arabiensis autosome. Inviability is complete when the gambiae and arabiensis inviability factors are hemi- or homozygous. Using a QTL mapping approach, regions that contribute to male hybrid sterility were also identified. The X chromosome has a disproportionately large effect on male hybrid sterility. Additionally, several moderate-to-large autosomal QTL were found in both species. The effect of these autosomal QTL is contingent upon the presence of an X chromosome from the other species. Substantial regions of the autosomes do not contribute markedly to male hybrid sterility. Finally, no evidence for epistatic interactions between conspecific sterility loci was found.  相似文献   

8.
The Anopheles maculipennis complex includes the most important malaria vectors of the western Palearctic. Anopheles maculipennis s.s., one member of this complex, is a reported vector in the Middle East. Here we describe the isolation of 15 microsatellite polymorphic loci from the An. maculipennis s.s. genome, displaying a high among individual diversity (0.37–0.77) in a sample from France. Three loci displayed a significant departure from Hardy–Weinberg proportions, suggesting a substantial frequency of null alleles. The remaining 12 loci are good candidates for further genetic studies in this species.  相似文献   

9.
The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from >40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rdl, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed.  相似文献   

10.
Favia G  Louis C 《Parassitologia》1999,41(1-3):115-118
The Afrotropical malaria vectors Anopheles gambiae sensu stricto and An. arabiensis, responsible for more than 3/4 of the world Plasmodium falciparum inoculations, are members of the Anopheles gambiae complex, a group consisting of six sibling species. The nominal species (An. gambiae s.s.) is by far the most anthropophilic vector and its adaptation to man and his environment involves further ongoing speciation processes. This fact is shown by the existence of a number of incipient taxonomic units characterised by different chromosomal arrangements derived from the presence of polymorphic paracentric inversions. This speciation process is centered in West Africa, where five so-called 'chromosomal forms' have been described, designated with a non-Linnean nomenclature: Forest, Bissau, Savanna, Bamako, and Mopti. Studies on the distribution and the ecology of these incipient species have highlighted specific adaptations to eco-ethological parameters, which might reflect on their relative efficiency as malaria vectors. Cytogenetic analysis, in spite of some inherent difficulties, has proved to be a powerful tool for the identification of An. gambiae sibling species and the individual chromosomal forms. Yet, modern molecular tools are now available, providing alternative faster low-cost technologies, and we discuss here their relative merits.  相似文献   

11.
Emerging species within the primary malaria vector Anopheles gambiae show different ecological preferences and significant prezygotic reproductive isolation. They are defined by fixed sequence differences in X-linked rDNA, but most previous studies have failed to detect large and significant differentiation between these taxa elsewhere in the genome, except at two other loci on the X chromosome near the rDNA locus. Hypothesizing that this pericentromeric region of the X chromosome may be accumulating differences faster than other regions of the genome, we explored the pattern and extent of differentiation between A. gambiae incipient species and a sibling species, A. arabiensis, from Burkina Faso, West Africa, at 17 microsatellite loci spanning the X chromosome. Interspecific differentiation was large and significant across the entire X chromosome. Among A. gambiae incipient species, we found some of the highest levels of differentiation recorded in a large region including eight independent loci near the centromere of the X chromosome. Outside of this region, no significant differentiation was detected. This pattern suggests that selection is playing a role in the emergence of A. gambiae incipient species. This process, associated with efficient exploitation of anthropogenic modifications to the environment, has public health implications as it fosters the spread of malaria transmission both spatially and temporally.  相似文献   

12.
The M and S molecular forms of the African malaria vector Anopheles gambiae (Diptera: Culicidae) are morphologically identical incipient species in which reproductive isolation is incomplete, enabling low-level gene flow between forms. In an attempt to find differences between the M and S forms, sequence variation was studied at loci along the X chromosome in adult female An. gambiae from Angola. A high proportion of M form specimens from Angola (79% of the 456 X chromosomes sampled) were found to contain a 16-bp insertion in intron 4 of the X-linked GPRCCK1 locus, relative to the AgamP3 release of the An. gambiae PEST genome sequence. The insertion was in Hardy-Weinberg equilibrium in Angolan M form populations. The same insertion was found in all S form specimens examined, regardless of where in Africa they were sampled, but was absent from a sample of M form specimens collected in Ghana, Bioko and Mali. In M form specimens from Angola, there was an association between alleles at the GPRCCK1 locus and those at a microsatellite locus, AGXH678, close to the centromere of the X chromosome, with significant linkage disequilibrium between loci separated by 0.472 Mbp (P < 0.033). We show that the insertion results from introgression from the S form into the M form, rather than from the retention of an ancestral character. Gene flow from the S to M form could allow genes of adaptive value to be transferred, including those conferring insecticide resistance and others influencing ecology and behaviour, and thus malaria transmission and control. We discuss factors that may have led to this introgression event.  相似文献   

13.
Among the aquatic developmental stages of the Anopheles gambiae complex (Diptera: Culicidae), both inter- and intra-specific interactions influence the resulting densities of adult mosquito populations. For three members of the complex, An. arabiensis Patton, An. quadriannulatus (Theobald) and An. gambiae Giles sensu stricto, we investigated some aspects of this competition under laboratory conditions. First-instar larvae were consumed by fourth-instar larvae of the same species (cannibalism) and by fourth-instar larvae of other sibling species (predation). Even when larvae were not consumed, the presence of one fourth-instar larva caused a significant reduction in development rate of first-instar larvae. Possible implications of these effects for population dynamics of these malaria vector mosquitoes are discussed.  相似文献   

14.
Using the Anopheles gambiae Giles genome as a template, we designed, screened and identified 14 novel Exon-Primed Intron-Crossing (EPIC) PCR primer pairs for Anopheles pseudopunctipennis Theobald 1901, a major vector of human Plasmodium sp. in South America. These primers were designed to target the conserved regions flanking consecutive exons of different genes and enabled the amplification of 17 loci of which nine were polymorphic. Polymorphisms at these loci ranged from two to four alleles. Intron length polymorphism analysis is a useful tool, which will allow the study of the population structure of this mosquito species, which remains poorly understood.  相似文献   

15.
The population structure of Anopheles gambiae in Africa was studied using 11 microsatellite loci in 16 samples from 10 countries. All loci are located outside polymorphic inversions. Heterogeneity among loci was detected and two putative outlier loci were removed from analyses aimed at capturing genome-wide patterns. Two main divisions of the gene pool were separated by high differentiation (F(ST) > 0.1). The northwestern (NW) division included populations from Senegal, Ghana, Nigeria, Cameroon, Gabon, Democratic Republic of Congo (DRC), and western Kenya. The southeastern (SE) division included populations from eastern Kenya, Tanzania, Malawi, and Zambia. Inhospitable environments for A. gambiae along the Rift Valley partly separate these divisions. Reduced genetic diversity in the SE division and results of an analysis based on private alleles support the hypothesis that a recent bottleneck, followed by colonization from the NW populations shaped this structure. In the NW division, populations possessing the M rDNA genotype appeared to form a monophyletic clade. Although genetic distance increased with geographic distance, discontinuities were suggested between certain sets of populations. The absence of heterozygotes between sympatric M and S populations in the DRC and the high differentiation in locus 678 (F(ST)>0.28) contrasted with low differentiation in all other loci (-0.02相似文献   

16.
Anopheles culicifacies, an important vector in the Indian subcontinent is a complex of five sibling species of which four are vectors. We describe the isolation of 31 microsatellite markers from the recently recognized isomorphic species A of which 13 were characterized in sympatric populations of Anopheles culicifacies isomorphic species A and B. The allele frequencies ranges from two to 12 in species A and two to seven in species B. Species A being a vector, and that these markers can be used in closely related species, makes the isolation of these markers important to study population structure of all sibling species in this complex.  相似文献   

17.
Three species of the Anopheles gambiae complex were identified in Guinea Bissau (West Africa) by chromosomal analysis. They were An. melas, An. arabiensis and An. gambiae s.s. An melas was observed in coastal and insular zones of the study area as well as in areas where the rivers are tidal and brackish and bordered by mangroves. For this reason, the species occurs also in inland riverine localities such as Farim and Bissorà. An. arabiensis apparently occurs only in low numbers in a very limited inland area during the dry season. An gambiae s.s. was observed nearly everywhere in the study area. In the samples of An. melas three inversion polymorphisms occurred: one on the chromosomal arm 2R (2Rn) and two on the arm 3R (3Rc and 3Re). It was observed that the frequencies of the inverted arrangements 2Rn and 3Re were significantly higher in the islands as compared to the continental sampling localities. The An. arabiensis sample was characterized by the presence of three inversion polymorphisms: 2Ra, 2Rb and 3Ra. A very high degree of polymorphism was shown by the An. gambiae s.s. samples. Four inversion polymorphisms were observed (three on chromosomal arm 2R and one on arm 2L) with very different frequencies of the alternative arrangements in different zones of the study area. From these data it seemed possible to split the species into three populations, each of them apparently linked with a peculiar ecological situation. The first population, characterized by high frequencies of 2Rd arrangement, is present on the coastal zones and in the islands; the second one is present in the northern inland areas particularly during the dry season and it is characterized by high frequencies of 2Rb and 2La arrangements. The third population is present only in the inland zones and it is characterized by high frequencies of 2Rjb, 2Rjd and 2Rjbd arrangements.  相似文献   

18.
A study was undertaken to identify the major larval habitats of the Anopheles gambiae (Giles) complex in rural Gambia. Mosquito larvae and pupae were sampled along transects and in specific habitats in the central region of the country during the rainy seasons of 1996 and 1997. The sampling showed that the major breeding sites were located on the flooded alluvial soils bordering the river. The largest numbers of larvae were found during September, one month after the peak rains. Polymerase chain reaction analysis of specimens showed that Anopheles melas (Theobald) was the dominant species in the flooded areas (81.5%), followed by A. gambiae sensu stricto (Giles) (18.0%) and A. arabiensis (Patton) (0.5%). By sampling in specific habitats it was evident that A. arabiensis was mainly breeding in rain-fed rice fields along the edge of the alluvial soils. Anopheles melas and A. gambiae s.s. often coexisted but whereas A. melas were found in water with a salinity of up to 72% sea water (25.2 g NaCl l(-1)), A. gambiae s.s. only occurred in water with up to 30% sea water (10.5 g NaCl l(-1)). Anopheles melas larvae were found in association with plant communities dominated by sedges and grasses (Eleocharis sp., Paspalum sp., Sporobolus sp.) and sea-purslane Sesuvium portulacastrum (L.) and the presence of cattle hoof prints, whereas A. gambiae s.s. larvae mainly occurred in association with Paspalum sp. and Eleocharis sp. The study showed that even during the peak rainy season, breeding of the A. gambiae complex is almost entirely restricted to the extensive alluvial areas along the river.  相似文献   

19.
ABSTRACT: BACKGROUND: A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. METHODS: The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. RESULTS: As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. CONCLUSION: The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.  相似文献   

20.
Microsatellite-containing region were isolated and characterized in Anopheles sinensis, a primary vector of malaria parasites in Asia. An enrichment protocol yielded 252 microsatellite sequences. We designed primers to amplify 20 unique microsatellites, 14 of which amplify cleanly and were polymorphic. A survey of 24 individuals showed that 12 loci are highly variable with the number of alleles ranging from two to 11, and expected heterozygosity ranging from 0.116 to 0.903. These markers will be useful for population genetic studies and genome mapping in A. sinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号