首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lestaurtinib, also called CEP‐701, is an inhibitor of tyrosine kinase, causes haematological remission in patients with AML possessing FLT3‐ITD (FLT3 gene) internal tandem duplication and strongly inhibits tyrosine kinase FLT3. Treatment with lestaurtinib modulates various signalling pathways and leads to cell growth arrest and programmed cell death in several tumour types. However, the effect of lestaurtinib on glioma remains unclear. In this study, we examined lestaurtinib and TRAIL interactions in glioma cells and observed their synergistic activity on glioma cell apoptosis. While U87 and U251 cells showed resistance to TRAIL single treatment, they were sensitized to apoptosis induced by TRAIL in the presence of lestaurtinib because of increased death receptor 5 (DR5) levels through CHOP‐dependent manner. We also demonstrated using a xenograft model of mouse that the tumour growth was absolutely suppressed because of the combined treatment compared to TRAIL or lestaurtinib treatment carried out singly. Our findings reveal a potential new strategy to improve antitumour activity induced by TRAIL in glioma cells using lestaurtinib through a mechanism dependent on CHOP.  相似文献   

2.
The prostate‐apoptosis‐response‐gene‐4 (Par‐4) is up‐regulated in prostate cells undergoing programmed cell death. Furthermore, Par‐4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor‐mediated cell death pathways. In this study, we investigated how Par‐4 modulates TRAIL‐mediated apoptosis in TRAIL‐resistant Caki cells. Par‐4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par‐4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase‐8 and the effector caspase‐3, together with an enforced cleavage of XIAP and c‐FLIP. TRAIL‐induced reduction of XIAP and c‐FLIP protein levels in Par‐4 overexpressing cells was prevented by z‐VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL‐treated Par‐4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par‐4 recovered Bcl‐2 level to basal level induced by wild type Par‐4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par‐4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par‐4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par‐4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl‐2, Akt, and NF‐κB. J. Cell. Biochem. 109: 885–895, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Defects in apoptosis are observed in many cancer cell types and contribute in a relevant way to tumorigenesis. Apoptosis is a complex and well‐regulated cell death program that plays a key role in the control of cell homeostasis, particularly at the level of the hematopoietic system. Apoptosis can be initiated through two different mechanisms involving either activation of the death receptors (extrinsic pathway) or activation of a mitochondrial apoptotic process (intrinsic pathway). Among the various death receptors a peculiar role is played by TNF‐related apoptosis‐inducing ligand (TRAIL)‐receptors (TRAIL‐Rs) and their ligand TRAIL. TRAIL recently received considerable interest for its potent anti‐tumor killing activity, sparing normal cells. Here, we will review the expression and the abnormalities of TRAIL/TRAIL‐R system in hematologic malignancies. The large majority of primary hematologic tumors are resistant to TRAIL‐mediated apoptosis, basically due to the activation of anti‐apoptotic signaling pathway (such as NF‐κB), overexpression of anti‐apoptotic proteins (such as FLIP, Bcl‐2, XIAP) or expression of TRAIL decoy receptors or reduced TRAIL‐R1/‐R2 expression. Strategies have been developed to bypass this TRAIL resistance and are based on the combination of TRAIL with chemotherapy or radiotherapy, or with proteasome or histone deacetylase or NF‐κB inhibitors. The agents used in combination with TRAIL either enhance TRAIL‐R1/‐R2 expression or decrease expression of anti‐apoptotic proteins (c‐FLIP, XIAP, Bcl‐2). Many of these combinatorial therapies hold promise for future developments in treatment of hematologic malignancies. J. Cell. Biochem. 110: 21–34, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Targeted therapy involving the activation of death receptors DR4 and/or DR5 by its ligand, TRAIL, can selectively induce apoptosis in certain tumor cells. In order to profile the dynamic activation or trimerization of TRAIL–DR4 in live cells in real‐time, the development of an apoptosis reporter cell line is essential. Fluorescence resonance energy transfer (FRET) technology via a FRET pair, cyan fluorescence protein (CFP) and yellow fluorescence protein (YFP), was used in this study. DR4‐CFP and DR4‐YFP were stably expressed in human lung cancer PC9 cells. Flow cytometer sorting and limited dilution coupled with fluorescence microscopy were used to select a monoclonal reporter cell line with high and compatible expression levels of DR4‐CFP and DR4‐YFP. FRET experiments were conducted and FRET efficiencies were monitored according to the Siegel's YFP photobleaching FRET protocol. Upon TRAIL induction a significant increase in FRET efficiencies from 5% to 9% demonstrated the ability of the DR4‐CFP/YFP reporter cell line in monitoring the dynamic activation of TRAIL pathways. 3D reconstructed confocal images of DR4‐CFP/YFP reporter cells exhibited a colocalized expression of DR4‐CFP and DR4‐YFP mainly on cell membranes. FRET results obtained during this study complements the use of epi‐fluorescence microscopy for FRET analysis. The real‐time FRET analysis allows the dynamic profiling of the activation of TRAIL pathways by using the time‐lapse fluorescence microscopy. Therefore, DR4‐CFP/YFP PC9 reporter cells along with FRET technology can be used as a tool for anti‐cancer drug screening to identify compounds that are capable of activating TRAIL pathways. Biotechnol. Bioeng. 2013; 110: 1396–1404. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Tumor necrosis factor (TNF) family cytokines are important mediators of inflammation. Elevated levels of serum TNF‐α are associated with human sensorineural hearing loss via poorly understood mechanisms. We demonstrate, for the first time, expression of TNF‐related apoptosis‐inducing ligand (TRAIL) and its signaling death receptor 5 (DR5) in the murine inner ear and show that exogenous TRAIL can trigger hair cell and neuronal degeneration, which can be partly prevented with DR5‐blocking antibodies.  相似文献   

7.
When clonal populations of human cells are exposed to apoptosis-inducing agents, some cells die and others survive. This fractional killing arises not from mutation but from preexisting, stochastic differences in the levels and activities of proteins regulating apoptosis. Here we examine the properties of cells that survive treatment with agonists of two distinct death receptors, tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and anti-FasR antibodies. We find that “survivor” cells are highly resistant to a second ligand dose applied 1 d later. Resistance is reversible, resetting after several days of culture in the absence of death ligand. “Reset” cells appear identical to drug-naive cells with respect to death ligand sensitivity and gene expression profiles. TRAIL survivors are cross-resistant to activators of FasR and vice versa and exhibit an NF-κB–dependent inflammatory phenotype. Remarkably, reversible resistance is induced in the absence of cell death when caspase inhibitors are present and can be sustained for 1 wk or more, also without cell death, by periodic ligand exposure. Thus stochastic differences in cell state can have sustained consequences for sen­sitivity to prodeath ligands and acquisition of proinflammatory phenotypes. The important role played by periodicity in TRAIL exposure for induction of opposing apoptosis and survival mechanisms has implications for the design of optimal therapeutic agents and protocols.  相似文献   

8.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

9.
Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co‐culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP‐1 monocyte‐derived foam cells, were analysed for the induction of senescence. Senescence associated β‐galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4‐hydroxnonenal (4‐HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4‐HNE in the co‐culture medium blunted this effect. Furthermore, both foam cells and 4‐HNE increased the expression of the pro‐oxidant thioredoxin‐interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell‐induced senescence. Previous studies showed that peroxisome proliferator‐activated receptor (PPAR)δ was activated by 4‐hydroalkenals, such as 4‐HNE. Pharmacological interventions supported the involvement of the 4‐HNE‐PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell‐released 4‐HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.  相似文献   

10.
Programmed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure. Here we show that during cell death the Arabidopsis serpin protease inhibitor, AtSerpin1, exhibits a pro‐survival function by inhibiting its target pro‐death protease, RD21. AtSerpin1 accumulates in the cytoplasm and RD21 accumulates in the vacuole and in endoplasmic reticulum bodies. Elicitors of cell death, including the salicylic acid agonist benzothiadiazole and the fungal toxin oxalic acid, stimulated changes in vacuole permeability as measured by the changes in the distribution of marker dye. Concomitantly, a covalent AtSerpin1–RD21 complex was detected indicative of a change in protease compartmentalization. Furthermore, mutant plants lacking RD21 or plants with AtSerpin1 over‐expression exhibited significantly less elicitor‐stimulated PCD than plants lacking AtSerpin1. The necrotrophic fungi Botrytis cinerea and Sclerotina sclerotiorum secrete oxalic acid as a toxin that stimulates cell death. Consistent with a pro‐death function for RD21 protease, the growth of these necrotrophs was compromised in plants lacking RD21 but accelerated in plants lacking AtSerpin1. The results indicate that AtSerpin1 controls the pro‐death function of compartmentalized protease RD21 by determining a set‐point for its activity and limiting the damage induced during cell death.  相似文献   

11.
Fragile histidine triad (FHIT) is a tumor suppressor gene whose allelic loss is associated to a number of human cancers. FHIT protein acts as a diadenosine oligophosphate hydrolase, but its tumor suppressive activity appears as independent from its enzymatic activity. Tumor necrosis factor (TNF)‐related apoptosis inducing ligand (TRAIL) can induce apoptosis in the FHIT‐negative non‐small lung cancer cell line Calu‐1. We generated four FHIT‐inducible Calu‐1 cell clones and demonstrated that FHIT expression was able to protect cells from TRAIL‐induced apoptosis, without affecting TRAIL‐receptors surface expression. FHIT‐specific small interference RNA transfection of SV40‐immortalized normal bronchial BEAS cells that show levels of FHIT protein comparable to those of normal bronchial cells, resulted in a significant increase of TRAIL‐induced apoptosis. Of note, suramin‐mediated inhibition of FHIT enzymatic activity also enhanced TRAIL‐induced apoptosis. We conclude that FHIT expression in lung cancer cells is protective from TRAIL‐induced apoptosis. Our data suggest that FHIT exerts this protective effect downstream TRAIL‐receptors and likely requires its dinucleoside‐triphosphate hydrolase activity. As TRAIL represents in the near future a good candidate for death ligands‐based anticancer therapy, its potential therapeutic use should be envisaged as preliminary to molecular genetics interventions or drug‐induced epigenetic modulations aimed to restoring FHIT gene expression levels in non‐small cells lung tumors. J. Cell. Physiol. 220: 492–498, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Low‐dose (≤0.1 Gy) radiation‐induced adaptive responses could protect cells from high‐challenge dose radiation‐induced killing. The protective role is believed to promote the repair of DNA double‐strand breaks (DSBs) that are a severe threat to cell survival. However, it remains unclear which repair pathway, homologous recombination repair (HRR) or non‐homologous end‐joining (NHEJ), is promoted by low‐dose radiation. To address this question, we examined the effects of low‐dose (0.1 Gy) on high‐challenge dose (2–4 Gy) induced killing in NHEJ‐ or HRR‐deficient cell lines. We showed that 0.1 Gy reduced the high‐dose radiation‐induced killing for wild‐type or HRR‐deficient cells, but enhanced the killing for NHEJ‐deficient cells. Interestingly, low‐dose radiation also enhanced the killing for wild‐type cells exposed to high‐challenge dose radiation with high‐linear energy transfer (LET). Because it is known that high‐LET radiation induces an inefficient NHEJ, these results support that the low‐dose radiation‐stimulated protective role in reducing high‐challenge dose (low‐LET)‐induced cell killing might depend on NHEJ. In addition, we showed that low‐dose radiation activated the DNA‐PK catalytic subunit (DNA‐PKcs) and the inhibitor of DNA‐PKcs destroyed the low‐dose radiation‐induced protective role. These results suggest that low‐dose radiation might promote NHEJ through the stimulation of DNA‐PKcs activity and; therefore, increase the resistance of cells to high‐challenge dose radiation‐induced killing. J. Cell. Physiol. 226: 369–374, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Current treatment for advanced, metastatic melanoma is not very effective, and new modalities are needed. ADI-PEG20 is a drug that specifically targets ASS-negative malignant melanomas while sparing the ASS-expressing normal cells. Although laboratory research and clinical trials showed promising results, there are some ASS-negative cell lines and patients that can develop resistance to this drug. In this report, we combined ADI-PEG20 with another antitumor drug TRAIL to increase the killing of malignant melanoma cells. This combination can greatly inhibit cell growth (to over 80%) and also enhanced cell death (to over 60%) in four melanoma cell lines tested compared with control. We found that ADI-PEG20 could increase the cell surface receptors DR4/5 for TRAIL and that caspase activity correlated with the increased cell death. These two drugs could also increase the level of Noxa while decrease that of survivin. We propose that these two drugs can complement each other by activating the intrinsic and extrinsic apoptosis pathways, thus enhance the killing of melanoma cells.  相似文献   

14.
15.
The capacity of tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) to trigger apoptosis preferentially in cancer cells, although sparing normal cells, has motivated clinical development of TRAIL receptor agonists as anti‐cancer therapeutics. The molecular mechanisms responsible for the differential TRAIL sensitivity of normal and cancer cells are, however, poorly understood. Here, we show a novel signalling pathway that activates cytoprotective autophagy in untransformed human epithelial cells treated with TRAIL. TRAIL‐induced autophagy is mediated by the AMP‐activated protein kinase (AMPK) that inhibits mammalian target of rapamycin complex 1, a potent inhibitor of autophagy. Interestingly, the TRAIL‐induced AMPK activation is refractory to the depletion of the two known AMPK‐activating kinases, LKB1 and Ca(2+)/calmodulin‐dependent kinase kinase‐β, but depends on transforming growth factor‐β‐activating kinase 1 (TAK1) and TAK1‐binding subunit 2. As TAK1 and AMPK are ubiquitously expressed kinases activated by numerous cytokines and developmental cues, these data are most likely to have broad implications for our understanding of cellular control of energy homoeostasis as well as the resistance of untransformed cells against TRAIL‐induced apoptosis.  相似文献   

16.
Tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) can induce apoptosis in cancer cells while sparing normal cells, thereby leading to the development of TRAIL receptor agonists for cancer treatment. However, these agonist‐based therapeutics exhibit little clinical benefits due to the lack of biomarkers to predict whether patients are responsive to the treatment, as well as determine the resistance of cancer cells to TRAIL‐based agonists. Our previous study has demonstrated that ISG12a enhances TRAIL‐induced apoptosis and might serve as a biomarker to predict the TRAIL response. The downstream mechanism by which ISG12a augments TRAIL‐induced apoptosis remains to be elucidated. In this study, we found that ISG12a was localized in the mitochondria and nucleus and augmented TRAIL‐induced apoptosis through intrinsic apoptotic pathway. In addition, ISG12a interacted with NR4A1 and promoted its nuclear‐to‐cytoplasm translocation. Upon translocate to cytoplasm, NR4A1 targeted mitochondria and induced Bcl2 conformational change, thereby exposing its BH3 domain. Moreover, TRAIL treatment can induce NR4A1 expression through the activation of NF‐κB in TRAIL‐resistant Huh7 hepatoma cells. Knockdown of NR4A1 could overcome TRAIL resistance. However, in TRAIL‐sensitive LH86 liver cancer cells, TRAIL activated the Jun N‐terminal kinases signalling pathway. Overall, these results showed that both ISG12a and its interaction partner NR4A1 are involved in TRAIL‐mediated apoptosis in hepatoma cells.  相似文献   

17.
Kim MR  Lee JY  Park MT  Chun YJ  Jang YJ  Kang CM  Kim HS  Cho CK  Lee YS  Jeong HY  Lee SJ 《FEBS letters》2001,505(1):179-184
Although the majority of cancer cells are killed by TRAIL (tumor necrosis factor-related apoptosis-inducing ligand treatment), certain types show resistance to it. Ionizing radiation also induces cell death in cancer cells and may share common intracellular pathways with TRAIL leading to apoptosis. In the present study, we examined whether ionizing radiation could overcome TRAIL resistance in the variant Jurkat clones. We first selected TRAIL-resistant or -sensitive Jurkat clones and examined cross-responsiveness of the clones between TRAIL and radiation. Treatment with gamma-radiation induced significant apoptosis in all the clones, indicating that there seemed to be no cross-resistance between TRAIL and radiation. Combined treatment of radiation with TRAIL synergistically enhanced killing of TRAIL-resistant cells, compared to TRAIL or radiation alone. Apoptosis induced by combined treatment of TRAIL and radiation in TRAIL-resistant cells was associated with cleavage of caspase-8 and the proapoptotic Bid protein, resulting in the activation of caspase-9 and caspase-3. No changes in the expressions of TRAIL receptors (DR4 and DR5) and Bcl-2 or Bax were found after treatment. The caspase inhibitor z-VAD-fmk completely counteracted the synergistic cell killing induced by combined treatment of TRAIL and gamma-radiation. These results demonstrated that ionizing radiation in combination with TRAIL could overcome resistance to TRAIL in TRAIL-resistant cells through TRAIL receptor-independent synergistic activation of the cascades of the caspase-8 pathway, suggesting a potential clinical application of combination treatment of TRAIL and ionizing radiation to TRAIL-resistant cancer cells.  相似文献   

18.
At present, no satisfactory anti‐liver fibrosis drugs have been used clinically due to the poor targeting ability and short half‐life period. This study aimed to explore the effects of a new TRAIL (TNF‐related apoptosis‐inducing ligand) preparation that can target aHSCs (activated hepatic stellate cells) on liver fibrosis and explain the possible underlying mechanism. Using our self‐made drug carrier pPB‐SSL that specifically targets aHSCs, recombinant human TRAIL (rhTRAIL) protein was embedded in (named as pPB‐SSL‐TRAIL) and applied to treat liver fibrotic mice as well as 3T3 fibroblast cells and aHSCs. Through in vitro and in vivo experiments, we found that, compared with the groups treated with TRAIL (free rhTRAIL) and SSL‐TRAIL (rhTRAIL capsulated within unmodified liposome), the group treated with pPB‐SSL‐TRAIL nanoparticles showed significantly lower cell viability and higher cell apoptosis in vitro. The targeting delivering system pPB‐SSL also significantly enhanced the anti‐fibrotic effect, apoptosis induction and long circulation of rhTRAIL. After the treatment with pPB‐SSL‐TRAIL, apoptosis of aHSCs was notably increased and hepatic fibrosis in mice was remarkably alleviated. In vitro, pPB‐SSL‐TRAIL nanoparticles were mainly transported and located on membrane or into cytoplasm, but the particles were distributed mainly in mouse fibrotic liver and most on the cell membrane of aHSCs. In conclusion, rhTRAIL carried by pPB‐SSL delivering system has prolonged circulation in blood, be able to target aHSCs specifically, and alleviate fibrosis both in vitro and in vivo. It presents promising prospect in the therapy of liver fibrosis, and it is worthwhile for us to develop it for clinical use.  相似文献   

19.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

20.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF‐κB ligand (RANKL) and TNF‐related apoptosis‐inducing ligand (TRAIL). While RANKL is essential for osteoclastogenesis and facilitates breast cancer migration into bone, TRAIL promotes breast cancer apoptosis. We analyzed the expression of OPG and TRAIL and its modulation in estrogen receptor‐positive MCF‐7 cells and receptor‐negative MDA‐MB‐231 cells. In both cells, OPG mRNA levels and protein secretion were dose‐ and time‐dependently enhanced by interleukin (IL)‐1β and suppressed by dexamethasone. In contrast to MCF‐7 cells, MDA‐MB‐231 abundantly expressed TRAIL mRNA, which was enhanced by IL‐1β and inhibited by dexamethasone. TRAIL activated pro‐apoptotic caspase‐3, ‐7, and poly‐ADP‐ribose polymerase and decreased cell numbers of MDA‐MB‐231, but had no effect on MCF‐7 cells. Gene silencing siRNA directed against OPG resulted in a 31% higher apoptotic rate compared to non‐target siRNA‐treated MDA‐MB‐231 cells. Furthermore, TRAIL induced significantly less apoptosis in cells cultured in conditioned media (containing OPG) compared to cells exposed to TRAIL in fresh medium lacking OPG (P < 0.01) and these protective effects were reversed by blocking OPG with its specific ligand RANKL (P < 0.05). The association between cancer cell survival and OPG production by MDA‐MB‐231 cells was further supported by the finding, that modulation of OPG secretion using IL‐1β or dexamethasone prior to TRAIL exposure resulted in decreased and increased rate of apoptosis, respectively (P < 0.05). Thus, OPG secretion by breast cancer cells is modulated by cytokines and dexamethasone, and may represent a critical resistance mechanism that protects against TRAIL‐induced apoptosis. J. Cell. Biochem. 108: 106–116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号