首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule‐binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin‐3 (KIF1) and kinesin‐4 (KIF21) subfamily that can also target dendrites. We found that microtubule‐binding protein doublecortin‐like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1‐dependent dense‐core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule‐binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.  相似文献   

2.
Members of the kinesin‐8 motor class have the remarkable ability to both walk towards microtubule plus‐ends and depolymerise these ends on arrival, thereby regulating microtubule length. To analyse how kinesin‐8 multitasks, we studied the structure and function of the kinesin‐8 motor domain. We determined the first crystal structure of a kinesin‐8 and used cryo‐electron microscopy to calculate the structure of the microtubule‐bound motor. Microtubule‐bound kinesin‐8 reveals a new conformation compared with the crystal structure, including a bent conformation of the α4 relay helix and ordering of functionally important loops. The kinesin‐8 motor domain does not depolymerise stabilised microtubules with ATP but does form tubulin rings in the presence of a non‐hydrolysable ATP analogue. This shows that, by collaborating, kinesin‐8 motor domain molecules can release tubulin from microtubules, and that they have a similar mechanical effect on microtubule ends as kinesin‐13, which enables depolymerisation. Our data reveal aspects of the molecular mechanism of kinesin‐8 motors that contribute to their unique dual motile and depolymerising functions, which are adapted to control microtubule length.  相似文献   

3.
Kinesin is an ATP-driven molecular motor protein that moves processively along microtubules. Despite considerable research, the detailed mechanism of kinesin motion remains elusive. We applied an enhanced suite of single- and multiple-molecule fluorescence polarization microscopy assays to report the orientation and mobility of kinesin molecules bound to microtubules as a function of nucleotide state. In the presence of analogs of ATP, ADP-Pi or in the absence of nucleotide, the kinesin head maintains a rigid orientation. In the presence of ADP, the motor domain of kinesin, still bound to the microtubule, adopts a previously undescribed, highly mobile state. This state may be general to the chemomechanical cycle of motor proteins; in the case of kinesin, the transition from a highly mobile to a rigid state after ADP release may contribute to the generation of the 8 nm step.  相似文献   

4.
Microtubules are dynamic polymers that stochastically switch between growing and shrinking phases. Microtubule dynamics are regulated by guanosine triphosphate (GTP) hydrolysis by β-tubulin, but the mechanism of this regulation remains elusive because high-resolution microtubule structures have only been revealed for the guanosine diphosphate (GDP) state. In this paper, we solved the cryoelectron microscopy (cryo-EM) structure of microtubule stabilized with a GTP analogue, guanylyl 5′-α,β-methylenediphosphonate (GMPCPP), at 8.8-Å resolution by developing a novel cryo-EM image reconstruction algorithm. In contrast to the crystal structures of GTP-bound tubulin relatives such as γ-tubulin and bacterial tubulins, significant changes were detected between GMPCPP and GDP-taxol microtubules at the contacts between tubulins both along the protofilament and between neighboring protofilaments, contributing to the stability of the microtubule. These findings are consistent with the structural plasticity or lattice model and suggest the structural basis not only for the regulatory mechanism of microtubule dynamics but also for the recognition of the nucleotide state of the microtubule by several microtubule-binding proteins, such as EB1 or kinesin.  相似文献   

5.
The association of cargoes to kinesins is thought to promote kinesin activation, yet the validation of such a model with native cargoes is lacking because none is known to activate kinesins directly in an in vitro system of purified components. The RAN‐binding protein 2 (RANBP2), through its kinesin‐binding domain (KBD), associates in vivo with kinesin‐1, KIF5B/KIF5C. Here, we show that KBD and its flanking domains, RAN GTPase‐binding domains 2 and 3 (RBD2/RBD3), activate the ATPase activity of KIF5B approximately 30‐fold in the presence of microtubules and ATP. The activation kinetics of KIF5B by RANBP2 is biphasic and highly cooperative. Deletion of one of its RBDs lowers the activation of KIF5B threefold and abolishes cooperativity. Remarkably, RBD2–KBD–RBD3 induces unfolding and modest activation of KIF5B in the absence of microtubules. Hence, RANBP2 is the first native and positive allosteric activator known to jump‐start and boost directly the activity of a kinesin.  相似文献   

6.
Kikkawa M  Hirokawa N 《The EMBO journal》2006,25(18):4187-4194
Kinesin is an ATP-driven microtubule (MT)-based motor fundamental to organelle transport. Although a number of kinesin crystal structures have been solved, the structural evidence for coupling between the bound nucleotide and the conformation of kinesin is elusive. In addition, the structural basis of the MT-induced ATPase activity of kinesin is not clear because of the absence of the MT in the structure. Here, we report cryo-electron microscopy structures of the monomeric kinesin KIF1A-MT complex in two nucleotide states at about 10 A resolution, sufficient to reveal the secondary structure. These high-resolution maps visualized clear structural changes that suggest a mechanical pathway from the nucleotide to the neck linker via the motor core rotation. In addition, new nucleotide binding pocket conformations are observed that are different from X-ray crystallographic structures; it is closed in the 5'-adenylyl-imidodiphosphate state, but open in the ADP state. These results suggest a structural model of biased diffusion movement of monomeric kinesin motor.  相似文献   

7.
Origins of reversed directionality in the ncd molecular motor.   总被引:8,自引:1,他引:7       下载免费PDF全文
The head or motor domain of the ncd (non-claret disjunctional) molecular motor is 41% identical to that of kinesin, yet moves along microtubules in the opposite direction to kinesin. We show here that despite the reversed directionality of ncd, its kinetics in solution are homologous in key respects to those of kinesin. The rate limiting step, ADP release, occurs at 0.0033 s-1 at 100 mM NaCl and is accelerated approximately 1000-fold when the motor binds to microtubules. Other reaction steps are all very fast (> 0.1 s-1) compared with ADP release, and the motor is consequently paused in the ncd.ADP state until microtubule binding occurs (Kd = 2 microM), at which point ADP release is triggered and the motor locks onto the microtubule in a rigor-like state. These data identify close functional homology between the strong binding states of kinesin and ncd, and in view of this we discuss a possible mechanism for directional reversal, in which the strong binding states of ncd and kinesin are functionally identical, but the weak binding states are biased in opposite directions.  相似文献   

8.
Friel CT  Howard J 《The EMBO journal》2011,30(19):3928-3939
Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-limiting step for ATP turnover by MCAK; unpolymerized tubulin and microtubules accelerate this step. Further, microtubule ends fully activate the ATPase by accelerating the exchange of ADP for ATP. This tuning of the cycle adapts MCAK for its depolymerization activity: lattice-stimulated ATP cleavage drives MCAK into a weakly bound nucleotide state that reaches microtubule ends by diffusion, and end-specific acceleration of nucleotide exchange drives MCAK into a strongly bound state that promotes depolymerization. This altered cycle accounts well for the different mechanical behaviour of this kinesin, which depolymerizes microtubules from their ends, compared to translocating kinesins that walk along microtubules. Thus, the kinesin motor domain is a nucleotide-dependent engine that can be differentially tuned for transport or depolymerization functions.  相似文献   

9.
Two structurally distinct filamentous tracks, namely singlet microtubules in the cytoplasm and axonemes in the cilium, serve as railroads for long‐range transport processes in vivo. In all organisms studied so far, the kinesin‐2 family is essential for long‐range transport on axonemes. Intriguingly, in higher eukaryotes, kinesin‐2 has been adapted to work on microtubules in the cytoplasm as well. Here, we show that heterodimeric kinesin‐2 motors distinguish between axonemes and microtubules. Unlike canonical kinesin‐1, kinesin‐2 takes directional, off‐axis steps on microtubules, but it resumes a straight path when walking on the axonemes. The inherent ability of kinesin‐2 to side‐track on the microtubule lattice restricts the motor to one side of the doublet microtubule in axonemes. The mechanistic features revealed here provide a molecular explanation for the previously observed partitioning of oppositely moving intraflagellar transport trains to the A‐ and B‐tubules of the same doublet microtubule. Our results offer first mechanistic insights into why nature may have co‐evolved the heterodimeric kinesin‐2 with the ciliary machinery to work on the specialized axonemal surface for two‐way traffic.  相似文献   

10.
Kinesin motor proteins drive intracellular transport by coupling ATP hydrolysis to conformational changes that mediate directed movement along microtubules. Characterizing these distinct conformations and their interconversion mechanism is essential to determining an atomic-level model of kinesin action. Here we report a comprehensive principal component analysis of 114 experimental structures along with the results of conventional and accelerated molecular dynamics simulations that together map the structural dynamics of the kinesin motor domain. All experimental structures were found to reside in one of three distinct conformational clusters (ATP-like, ADP-like and Eg5 inhibitor-bound). These groups differ in the orientation of key functional elements, most notably the microtubule binding α4–α5, loop8 subdomain and α2b-β4-β6-β7 motor domain tip. Group membership was found not to correlate with the nature of the bound nucleotide in a given structure. However, groupings were coincident with distinct neck-linker orientations. Accelerated molecular dynamics simulations of ATP, ADP and nucleotide free Eg5 indicate that all three nucleotide states could sample the major crystallographically observed conformations. Differences in the dynamic coupling of distal sites were also evident. In multiple ATP bound simulations, the neck-linker, loop8 and the α4–α5 subdomain display correlated motions that are absent in ADP bound simulations. Further dissection of these couplings provides evidence for a network of dynamic communication between the active site, microtubule-binding interface and neck-linker via loop7 and loop13. Additional simulations indicate that the mutations G325A and G326A in loop13 reduce the flexibility of these regions and disrupt their couplings. Our combined results indicate that the reported ATP and ADP-like conformations of kinesin are intrinsically accessible regardless of nucleotide state and support a model where neck-linker docking leads to a tighter coupling of the microtubule and nucleotide binding regions. Furthermore, simulations highlight sites critical for large-scale conformational changes and the allosteric coupling between distal functional sites.  相似文献   

11.
Molecular motors such as kinesin regulate affinity to a rail protein during the ATP hydrolysis cycle. The regulation mechanism, however, is yet to be determined. To understand this mechanism, we investigated the structural fluctuations of the motor head of the single‐headed kinesin called KIF1A in different nucleotide states using molecular dynamics simulations of a Gō‐like model. We found that the helix at the microtubule (MT) binding site intermittently exhibits a large structural fluctuation when MT is absent. Frequency of this fluctuation changes systematically according to the nucleotide states and correlates strongly with the experimentally observed binding affinity to MT. We also showed that thermal fluctuation enhances the correlation and the interaction with the nucleotide suppresses the fluctuation of the helix . These results suggest that KIF1A regulates affinity to MT by changing the flexibility of the helix during the ATP hydrolysis process: the binding site becomes more flexible in the strong binding state than in the weak binding state. Proteins 2015; 83:809–819. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The complex dynamic behavior of microtubules (MTs) is believed to be primarily due to the αβ‐tubulin dimer architecture and its intrinsic GTPase activity. Hence, a detailed knowledge of the conformational variations of isolated α‐GTP‐β‐GTP‐ and α‐GTP‐β‐GDP‐tubulin dimers in solution and their implications to interdimer interactions and stability is directly relevant to understand the MT dynamics. An attempt has been made here by combining molecular dynamics (MD) simulations and protein–protein docking studies that unravels key structural features of tubulin dimer in different nucleotide states and correlates their association to tubulin assembly. Results from simulations suggest that tubulin dimers and oligomers attain curved conformations in both GTP and GDP states. Results also indicate that the tubulin C‐terminal domain and the nucleotide state are closely linked. Protein–protein docking in combination with MD simulations suggest that the GTP‐tubulin dimers engage in relatively stronger interdimer interactions even though the interdimer interfaces are bent in both GTP and GDP tubulin complexes, providing valuable insights on in vitro finding that GTP‐tubulin is a better assembly candidate than GDP‐tubulin during the MT nucleation and elongation processes. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 282–291, 2013.  相似文献   

13.
Li M  Zheng W 《Biochemistry》2012,51(25):5022-5032
In this study, we have performed a comprehensive structural investigation of three major biochemical states of a kinesin complexed with microtubule under the constraint of high-quality cryo-electron-microscopy (EM) maps. In addition to the ADP and ATP state which were captured by X-ray crystallography, we have also modeled the nucleotide-free or APO state for which no crystal structure is available. We have combined flexible fitting of EM maps with regular molecular dynamics simulations, hydrogen-bond analysis, and free energy calculation. Our APO-state models feature a subdomain rotation involving loop L2 and α6 helix of kinesin, and local structural changes in active site similar to a related motor protein, myosin. We have identified a list of hydrogen bonds involving key residues in the active site and the binding interface between kinesin and microtubule. Some of these hydrogen bonds may play an important role in coupling microtubule binding to ATPase activities in kinesin. We have validated our models by calculating the binding free energy between kinesin and microtubule, which quantitatively accounts for the observation of strong binding in the APO and ATP state and weak binding in the ADP state. This study will offer promising targets for future mutational and functional studies to investigate the mechanism of kinesin motors.  相似文献   

14.
ATP and UTP support microtubule assembly through the action of brain nucleoside-5'-diphosphate kinase on GDP. Penningroth and Kirschner (1977) J. Mol. Biol. 115, 643-673) have proposed that microtubule assembly may occur by either of two mechanisms: indirectly, through nucleoside-5'-diphosphate kinase-catalyzed phosphorylation of uncomplexed GDP and directly by nucleoside-5'-diphosphate kinase-mediated transphosphorylation of tubulin-bound GDP at low tubulin concentrations. We find the rates of GDP and GTP release (0.68 and 0.32 min-1, respectively) are sufficiently fast relative to assembly to permit GDP release, phosphorylation, and GTP binding as the sole mechanism of nucleoside-5'-diphosphate kinase action in microtubule assembly. Computer simulation studies accord with the conclusion that GDP release is rapid relative to microtubule assembly. The specific activity of the nucleoside-5'-diphosphate kinase is 1.7 nmol/min/mg of microtubular protein under the conditions studied. Pulse-chase experiments with tubulin . [14C]GDP complex and the rapidity of GDP phosphorylation by the kinase are in agreement with this scheme. Finally, it was observed that the extent and rate of microtubule assembly depends upon the [ATP]/[ADP] ratio.  相似文献   

15.
We present a new map showing dimeric kinesin bound to microtubules in the presence of ADP that was obtained by electron cryomicroscopy and image reconstruction. The directly bound monomer (first head) shows a different conformation from one in the more tightly bound empty state. This change in the first head is amplified as a movement of the second (tethered) head, which tilts upward. The atomic coordinates of kinesin.ADP dock into our map so that the tethered head associates with the bound head as in the kinesin dimer structure seen by x-ray crystallography. The new docking orientation avoids problems associated with previous predictions; it puts residues implicated by proteolysis-protection and mutagenesis studies near the microtubule but does not lead to steric interference between the coiled-coil tail and the microtubule surface. The observed conformational changes in the tightly bound states would probably bring some important residues closer to tubulin. As expected from the homology with kinesin, the atomic coordinates of nonclaret disjunctional protein (ncd).ADP dock in the same orientation into the attached head in a map of microtubules decorated with dimeric ncd.ADP. Our results support the idea that the observed direct interaction between the two heads is important at some stages of the mechanism by which kinesin moves processively along microtubules.  相似文献   

16.
We have used single‐particle reconstruction in cryo‐electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF‐Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF‐Tu, but before the release of EF‐Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 Å. Secondary structure elements in tRNA, EF‐Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF‐Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF‐Tu.  相似文献   

17.
Recent research on kinesin motors has outlined the diversity of the superfamily and defined specific cargoes moved by kinesin family (KIF) members. Owing to the difficulty of purifying large amounts of native motors, much of this work has relied on recombinant proteins expressed in vitro. This approach does not allow ready determination of the complement of kinesin motors present in a given tissue, the relative amounts of different motors, or comparison of their native activities. To address these questions, we isolated nucleotide-dependent, microtubule-binding proteins from 13-day chick embryo brain. Proteins were enriched by microtubule affinity purification, then subjected to velocity sedimentation to separate the 20S dynein/dynactin pool from a slower sedimenting KIF containing pool. Analysis of the latter pool by anion exchange chromatography revealed three KIF species: kinesin I (KIF5), kinesin II (KIF3), and KIF1C (Unc104/KIF1). The most abundant species, kinesin I, exhibited the expected long range microtubule gliding activity. By contrast, KIF1C did not move microtubules. Kinesin II, the second most abundant KIF, could be fractionated into two pools, one containing predominantly A/B isoforms and the other containing A/C isoforms. The two motor species had similar activities, powering microtubule gliding at slower speeds and over shorter distances than kinesin I.  相似文献   

18.
Cells generate diverse microtubule populations by polymerization of a common α/β-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations.  相似文献   

19.
We have studied the structure of microtubules decorated with kinesin motor domains in different nucleotide states by 3D electron microscopy. Having docked the atomic coordinates of both dimeric ADP.kinesin and tubulin heterodimer into a map of kinesin dimers bound to microtubules in the presence of ADP, we try to predict which regions of the proteins interact in the weakly binding state. When either the presence of 5'-adenylyimidodiphosphate (AMP-PNP) or an absence of nucleotides puts motor domains into a strongly-bound state, the 3D maps show changes in the motor domains which modify their interaction with beta-tubulin. The maps also show differences in beta-tubulin conformation compared with undecorated microtubules or those decorated with weakly-bound motors. Strongly-bound ncd appears to produce an identical change.  相似文献   

20.
Post-Golgi carriers of various newly synthesized axonal membrane proteins, which possess kinesin (KIF5)-driven highly processive motility, were transported from the TGN directly to axons. We found that KIF5 has a preference to the microtubules in the initial segment of axon. Low dose paclitaxel treatment caused missorting of KIF5, as well as axonal membrane proteins to the tips of dendrites. Microtubules in the initial segment of axons showed a remarkably high affinity to EB1-YFP, which was known to bind the tips of growing microtubules. These findings revealed unique features of the microtubule cytoskeletons in the initial segment, and suggested that they provide directional information for polarized axonal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号