首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first two lineages to differentiate from a pluripotent cell population during mammalian development are the extraembryonic trophectoderm (TE) and the primitive endoderm (PrE). Whereas the mechanisms of TE specification have been extensively studied, segregation of PrE and the pluripotent epiblast (EPI) has received comparatively little attention. A current model of PrE specification suggests PrE precursors exhibit an apparently random distribution within the inner cell mass of the early blastocyst and then segregate to their final position lining the cavity by the late blastocyst. We have identified platelet-derived growth factor receptor alpha (Pdgfralpha) as an early-expressed protein that is also a marker of the later PrE lineage. By combining live imaging of embryos expressing a histone H2B-GFP fusion protein reporter under the control of Pdgfra regulatory elements with the analysis of lineage-specific markers, we investigated the events leading to PrE and EPI lineage segregation in the mouse, and correlated our findings using an embryo staging system based on total cell number. Before blastocyst formation, lineage-specific factors are expressed in an overlapping manner. Subsequently, a gradual progression towards a mutually exclusive expression of PrE- and EPI-specific markers occurs. Finally, cell sorting is achieved by a variety of cell behaviours and by selective apoptosis.  相似文献   

2.
3.
4.
5.
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.  相似文献   

6.
Development of the mouse embryo to the blastocyst stage occurs over 3 to 4 days following fertilization of the oocyte. During this time, several molecular and morphological events take place that result in the formation of three distinct cell lineages: the trophectoderm, the epiblast, and the primitive endoderm. Many studies have investigated the processes that control lineage specification in the blastocyst including gene expression, cell signaling, cell-cell contact/positional relationships, and most recently, epigenetics. Here we review, at the molecular level, recent contributions to our understanding of the mechanisms that play a role in formation of these lineages. Additionally, we focus on the next steps in differentiation to highlight processes important in the development of those lineages that contribute to the extraembryonic tissues. In this context, we discuss the establishment of extraembryonic ectoderm and the contributions of parietal and visceral endoderm to yolk sac formation.  相似文献   

7.
The de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns in mouse development. Dnmt3b is more highly expressed in early developmental stages than Dnmt3a, and is thought to have an important role in the epigenetic gene regulation during early embryogenesis. Previous reports suggest that Dnmt3b is expressed preferentially in the embryonic lineage, but less in the extra-embryonic lineage, in early post-implantation embryos. However, it is unclear when this lineage-specific differential expression is established. Here we demonstrate that Dnmt3b shows a dynamic expression change during pre- and early post-implantation development. Contrary to the expectation, Dnmt3b is preferentially expressed in the trophectoderm rather than the inner cell mass at the mid blastocyst stage. Subsequently, the spatial Dnmt3b expression gradually changes during pre- and early post-implantation development, and finally Dnmt3b expression is settled in the embryonic lineage at the epiblast stage. The findings are consistent with the role for Dnmt3b in cell-lineage specification and the creation of lineage-specific DNA methylation patterns.  相似文献   

8.
9.
We microinjected horseradish peroxidase and rhodamine-conjugated dextran into single inner cell mass (ICM) cells of preimplantation mouse embryos to study their fate in culture. Simultaneous iontophoresis of both lineage markers allowed immediate localization of the injected cell by epifluorescence, followed by microdrop culture of individual embryos. After 24 hr in culture, labeled descendants were found in the polar trophectoderm, ICM, and parietal endoderm, providing direct evidence that the ICM contributes descendants to the trophectoderm and the endoderm in the intact mouse embryo. Our results substantiate the totipotency of the ICM during the expanding blastocyst stage and further demonstrate that the ICM is a stem cell population from which cells are recruited into these tissue lineages during growth of the blastocyst.  相似文献   

10.
11.
12.
13.
14.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

15.
16.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

17.
18.
During cleavage, the mouse embryo expresses a variety of cell adhesion systems on its cell surfaces. We have reviewed biogenetic and assembly criteria for the formation of the uvomorulin/catenin, tight junction and desmosome adhesion systems as the trophectoderm differentiates. Each system reveals different mechanisms regulating molecular maturation. Adhesion processes contribute to the generation of distinct tissues in the blastocyst by modifying the expression pattern of blastomeres entering the non-epithelial inner cell mass lineage. Cell adhesion also influences the spatial organisation, but rarely the timing of expression, of proteins involved in trophectoderm differentiation.  相似文献   

19.
20.
In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around gastrulation, days 8-17 postinsemination, introducing a stereomicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers was observed at defined stages, suggesting correlations to lineage specification. In the endoderm, clearance of OCT4 was apparent from early during its formation at the primitive streak stage. The endoderm harbored progenitors of the "fourth germ layer," the primordial germ cells (PGCs), the only cells maintaining expression of OCT4 at the end of gastrulation. In the ectodermal and mesodermal cell lineages, OCT4 became undetectable at the neural groove and somite stage, respectively. As in the mouse, PGCs showed onset of c-kit expression when located in extraembryonal compartments. They appeared to follow the endoderm during extraembryonal allocation and the mesoderm on return to the genital ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号