首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the molecules mediating the cross‐talk between post‐traumatic axons and scar‐forming cells after spinal cord injury. We found that a sustained NB‐3 induction was simultaneously present in the terminations of post‐traumatic corticospinal axons and scar‐forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB‐3 deficiency or interruption of NB‐3 trans‐homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB‐3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar‐forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB‐3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB‐3 trans‐homophilic interactions mediate the cross‐talk between post‐traumatic axons and scar‐forming cells and impair the intrinsic growth ability of injured axons.  相似文献   

2.
G-quadruplexes are nucleic acid secondary structures for which many biological roles have been proposed but whose existence in vivo has remained elusive. To assess their formation, highly specific G-quadruplex ligands are needed. Here, we tested Phen-DC3 and Phen-DC6, two recently released ligands of the bisquinolinium class. In vitro, both compounds exhibit high affinity for the G4 formed by the human minisatellite CEB1 and inhibit efficiently their unwinding by the yeast Pif1 helicase. In vivo, both compounds rapidly induced recombination-dependent rearrangements of CEB1 inserted in the Saccharomyces cerevisiae genome, but did not affect the stability of other tandem repeats lacking G-quadruplex forming sequences. The rearrangements yielded simple-deletion, double-deletion or complex reshuffling of the polymorphic motif units, mimicking the phenotype of the Pif1 inactivation. Treatment of Pif1-deficient cells with the Phen-DC compounds further increased CEB1 instability, revealing additional G4 formation per cell. In sharp contrast, the commonly used N-methyl-mesoporphyrin IX G-quadruplex ligand did not affect CEB1 stability. Altogether, these results demonstrate that the Phen-DC bisquinolinium compounds are potent molecular tools for probing the formation of G-quadruplexes in vivo, interfere with their processing and elucidate their biological roles.  相似文献   

3.
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.  相似文献   

4.
The purpose of this study was to determine the correlation between over‐expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio‐sensitivity of non‐small cell lung carcinoma (NSCLC) cells. 3‐[4,5‐dimethylthylthiazol‐2‐yl]‐2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V‐Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X‐ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF‐κB. Finally, to examine the effect of shNRP1 on proliferation and radio‐sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1‐A549) showed a significant reduction in colony‐forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA‐mediated NRP1 inhibition also significantly enhanced the radio‐sensitivity of NSCLC cells both in vitro and in vivo. The over‐expression of NRP1 was correlated with growth, survival and radio‐resistance of NSCLC cells via the VEGF‐PI3K‐ NF‐κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio‐sensitization of NSCLC.  相似文献   

5.
Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2‐methoxyestradiol (2‐ME) has been shown effective in the anti‐angiogenic treatment. This study was conducted to examine whether and how 2‐ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague‐Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID‐1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down‐regulate these molecules. 2‐ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF‐1α expression induced by anoxia in HUVECs but also reversed the up‐regulation of ID‐1 and down‐regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti‐angiogenesis effects of 2‐ME observed in VH rats and anoxic HUVECs were abrogated by ID‐1 overexpression and p53 knockdown. Our data collectively suggest that 2‐ME treatment inhibits hypoxia/anoxia‐induced angiogenesis dependently on ID‐1 down‐regulation and p53 up‐regulation, providing a potential alternative medical treatment for un‐ruptured AVM patients.  相似文献   

6.
7.
8.
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH protects nigrostriatal neurons against 6‐hydroxydopamine (6‐OHDA)‐induced endoplasmic reticulum stress (ERS) in vivo and in vitro. ECH rescued cell viability in damaged cells and decreased 6‐OHDA‐induced reactive oxygen species accumulation in vitro. It also rescued tyrosine hydroxylase and dopamine transporter expression in the striatum, and decreased α‐synuclein aggregation following 6‐OHDA treatment in vivo. The validated mechanism of ECH activity was the reduction in the 6‐OHDA‐induced accumulation of seipin (Berardinelli–Seip congenital lipodystrophy 2). Seipin has been shown to be a key molecule related to motor neuron disease and was tightly associated with ERS in a series of in vivo studies. ECH attenuated seipinopathy by promoting seipin degradation via ubiquitination. ERS was relieved by ECH through the Grp94/Bip‐ATF4‐CHOP signal pathway.  相似文献   

9.
Using micropropagation through tissue culture has become the most used approach worldwide for mass production for the conservation of endangered species. However, the screening of somaclonal variations generated using in vitro culture is usually restricted to the first generation of micropropagated plants, when they have not yet been released in the field. Accordingly, the fate of genetically modified regenerants after sexual reproduction is usually not assessed and changes in the genetic structures of species are unknown. In this work, we assess the cytogenetic stability of two rDNA gene families in the offspring of experimental crosses between accessions generated after in vitro culture and wild individuals of Cistus heterophyllus (Cistaceae). The cytogenetic rDNA profiles (45S rDNA, 5S rDNA) of 118 accessions including wild and in vitro micropropagated individuals and bi‐directional artificial crosses between wild and in vitro‐generated plants were assessed by fluorescence in situ hybridization (FISH) and Ag‐NOR staining. Plants regenerated by micropropagation showed a lower size of the FISH signals in a 45S rDNA site, but this condition was not present in the wild accessions. Three new cytogenetic and cytological variants were present in 36% of the experimental progeny, involving the amplification of one additional 45S rDNA site and the presence of heteromorphic nucleoli. rDNA‐based genomic instability was present after sexual reproduction between wild and in vitro‐generated plants. The results of this study discourage the use of micropropagated materials for plant conservation unless comprehensive surveys of the genetic integrity and stability of the regenerants are performed after crossing between wild and micropropagated plants.  相似文献   

10.
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non‐coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long‐standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR–dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR–dCas9 can be combined with fluorescence‐labelled proteins to visualize DNA–protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells.  相似文献   

11.
In the plant apoplast, ascorbate is oxidised, via dehydroascorbic acid, to O‐oxalyl esters [oxalyl‐l ‐threonate (OxT) and cyclic oxalyl‐l ‐threonate (cOxT)]. We tested whether OxT and cOxT can donate the oxalyl group in transacylation reactions to form oxalyl‐polysaccharides, potentially modifying the cell wall. [oxalyl14C]OxT was incubated with living spinach (Spinacia oleracea) and Arabidopsis cell‐suspension cultures in the presence or absence of proposed acceptor substrates (carbohydrates). In addition, [14C]OxT and [14C]cOxT were incubated in vitro with cell‐wall enzyme preparations plus proposed acceptor substrates. Radioactive products were monitored electrophoretically. Oxalyltransferase activity was detected. Living cells incorporated oxalate groups from OxT into cell‐wall polymers via ester bonds. When sugars were added, [14C]oxalyl‐sugars were formed, in competition with OxT hydrolysis. Preferred acceptor substrates were carbohydrates possessing primary alcohols e.g. glucose. A model transacylation product, [14C]oxalyl‐glucose, was relatively stable in vivo (half‐life >24 h), whereas [14C]OxT underwent rapid turnover (half‐life ~6 h). Ionically wall‐bound enzymes catalysed similar transacylation reactions in vitro with OxT or cOxT as oxalyl donor substrates and any of a range of sugars or hemicelluloses as acceptor substrates. Glucosamine was O‐oxalylated, not N‐oxalylated. We conclude that plants possess apoplastic acyltransferase (oxalyltransferase) activity that transfers oxalyl groups from ascorbate catabolites to carbohydrates, forming relatively long‐lived O‐oxalyl‐carbohydrates. The findings increase the range of known metabolites whose accumulation in vivo indicates vitamin C catabolism. Possible signalling roles of the resulting oxalyl‐sugars can now be investigated, as can the potential ability of polysaccharide oxalylation to modify the wall's physical properties.  相似文献   

12.
In a de novo genotyping‐by‐sequencing (GBS) analysis of short, 64‐base tag‐level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag‐level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635‐line diversity panel were used to infer chromosome‐level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high‐resolution genome analysis and genomic selection in oats. A combined genome‐wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component‐based genome‐wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS‐derived markers facilitate genome analysis and genomic selection in oat.  相似文献   

13.
Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world‐wide commercial farmed fish. These cell lines, designated as TES1‐3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder‐free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26‐labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non‐protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES‐based biotechnology in commercial fish.  相似文献   

14.
In neurons, increased protein–protein interactions between neuronal nitric oxide synthase (nNOS) and its carboxy‐terminal PDZ ligand (CAPON) contribute to excitotoxicity and abnormal dendritic spine development, both of which are involved in the development of Alzheimer's disease. In models of Alzheimer's disease, increased nNOS–CAPON interaction was detected after treatment with amyloid‐β in vitro, and a similar change was found in the hippocampus of APP/PS1 mice (a transgenic mouse model of Alzheimer's disease), compared with age‐matched background mice in vivo. After blocking the nNOS–CAPON interaction, memory was rescued in 4‐month‐old APP/PS1 mice, and dendritic impairments were ameliorated both in vivo and in vitro. Furthermore, we demonstrated that S‐nitrosylation of Dexras1 and inhibition of the ERK–CREB–BDNF pathway might be downstream of the nNOS–CAPON interaction.  相似文献   

15.
16.
Telomeres generally consist of short repeats of minisatellite DNA sequences and are useful in chromosome identification and karyotype analysis. To date, telomeres have not been characterized in the economically important brown seaweed Saccharina japonica, thus its full cytogenetic research and genetic breeding potential has not been realized. Herein, the tentative sequence of telomeres in S. japonica was identified by PCR amplification with primers designed based on the Arabidopsis‐type telomere sequence (TTTAGGG)n, which was chosen out of three possible telomeric repeat DNA sequences typically present in plants and algae. After PCR optimization and cloning, sequence analysis of the amplified products from S. japonica genomic DNA showed that they were composed of repeat units, (TTTAGGG)n, in which the repeat number ranged from 15 to 63 (n = 46). This type of repeat sequence was verified by a Southern blot assay with the Arabidopsis‐type telomere sequence as a probe. The digestion of S. japonica genomic DNA with the exonuclease Bal31 illustrated that the target sequence corresponding to the Arabidopsis‐type telomere sequence was susceptible to Bal31 digestion, suggesting that the repeat sequence was likely located at the outermost ends of the kelp chromosomes. Fluorescence in situ hybridizations with the aforementioned probe provided the initial cytogenetic evidence that the hybridization signals were principally localized at both ends of S. japonica chromosomes. This study indicates that the telomeric repeat of the kelp chromosomes is (TTTAGGG)n which differs from the previously reported (TTAGGG)n sequence in Ectocarpus siliculosus through genome sequencing, thereby suggesting distinct telomeres in brown seaweeds.  相似文献   

17.
Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self‐renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow‐derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self‐renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine‐induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self‐renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self‐renewal might be a relevant parameter of ageing.  相似文献   

18.
The medicinal plant Camptotheca acuminata accumulates camptothecin, 10‐hydroxycamptothecin, and 10‐methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10‐hydroxycamptothecin O‐methyltransferase (Ca10OMT), a member of the Diverse subclade of class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A‐ring 7‐OH of flavonoids, which is structurally equivalent to the 10‐OH of 10‐hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3‐D positioning of the 7‐OH, A‐ and C‐rings of flavonoids is nearly identical to the 10‐OH, A‐ and B‐rings of 10‐hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10‐hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7‐OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMTin vivo is 10‐hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non‐inhibitory flavonoid glycosides.  相似文献   

19.
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte‐specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C‐terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf‐1 and characterized it in the context of the sRNA pathways of C. elegans. We report that GTSF‐1 is not required for Piwi‐mediated gene silencing. Instead, gtsf‐1 mutants show a striking depletion of 26G‐RNAs, a class of endogenous sRNAs, fully phenocopying rrf‐3 mutants. We show, both in vivo and in vitro, that GTSF‐1 interacts with RRF‐3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF‐1 is required for the assembly of a larger RRF‐3 and DCR‐1‐containing complex (ERIC), thereby allowing for 26G‐RNA generation. We propose that GTSF‐1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA‐mediated silencing activities.  相似文献   

20.
Whole chromosome gains or losses (aneuploidy) are a hallmark of ~70% of human tumors. Modeling the consequences of aneuploidy has relied on perturbing spindle assembly checkpoint (SAC) components, but interpretations of these experiments are clouded by the multiple functions of these proteins. Here, we used a Cre recombinase‐mediated chromosome loss strategy to individually delete mouse chromosomes 9, 10, 12, or 14 in tetraploid immortalized murine embryonic fibroblasts. This methodology also involves the generation of a dicentric chromosome intermediate, which subsequently undergoes a series of breakage–fusion–bridge (BFB) cycles. While the aneuploid cells generally display a growth disadvantage in vitro, they grow significantly better in low adherence sphere‐forming conditions and three of the four lines are transformed in vivo, forming large and invasive tumors in immunocompromised mice. The aneuploid cells display increased chromosomal instability and DNA damage, a mutator phenotype associated with tumorigenesis in vivo. Thus, these studies demonstrate a causative role for whole chromosome loss and the associated BFB‐mediated instability in tumorigenesis and may shed light on the early consequences of aneuploidy in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号