共查询到20条相似文献,搜索用时 31 毫秒
1.
Dorothee Dormann Ramona Rodde Dieter Edbauer Eva Bentmann Ingeborg Fischer Alexander Hruscha Manuel E Than Ian R A Mackenzie Anja Capell Bettina Schmid Manuela Neumann Christian Haass 《The EMBO journal》2010,29(16):2841-2857
Mutations in fused in sarcoma (FUS) are a cause of familial amyotrophic lateral sclerosis (fALS). Patients carrying point mutations in the C‐terminus of FUS show neuronal cytoplasmic FUS‐positive inclusions, whereas in healthy controls, FUS is predominantly nuclear. Cytoplasmic FUS inclusions have also been identified in a subset of frontotemporal lobar degeneration (FTLD‐FUS). We show that a non‐classical PY nuclear localization signal (NLS) in the C‐terminus of FUS is necessary for nuclear import. The majority of fALS‐associated mutations occur within the NLS and impair nuclear import to a degree that correlates with the age of disease onset. This presents the first case of disease‐causing mutations within a PY‐NLS. Nuclear import of FUS is dependent on Transportin, and interference with this transport pathway leads to cytoplasmic redistribution and recruitment of FUS into stress granules. Moreover, proteins known to be stress granule markers co‐deposit with inclusions in fALS and FTLD‐FUS patients, implicating stress granule formation in the pathogenesis of these diseases. We propose that two pathological hits, namely nuclear import defects and cellular stress, are involved in the pathogenesis of FUS‐opathies. 相似文献
2.
David Gamarra Hikaru Kobayashi Yoshihiro Takatsu Kyoko Takatsu Jesús Gil Ignacio Palmero 《Aging cell》2013,12(5):923-931
The regulation of gene expression by microRNAs (miRNAs) is critical for normal development and physiology. Conversely, miRNA function is frequently impaired in cancer, and other pathologies, either by aberrant expression of individual miRNAs or dysregulation of miRNA synthesis. Here, we have investigated the impact of global disruption of miRNA biogenesis in primary fibroblasts of human or murine origin, through the knockdown of DGCR8, an essential mediator of the synthesis of canonical miRNAs. We find that the inactivation of DGCR8 in these cells results in a dramatic antiproliferative response, with the acquisition of a senescent phenotype. Senescence triggered by DGCR8 loss is accompanied by the upregulation of the cell‐cycle inhibitor p21CIP1. We further show that a subset of senescence‐associated miRNAs with the potential to target p21CIP1 is downregulated during DGCR8‐mediated senescence. Interestingly, the antiproliferative response to miRNA biogenesis disruption is retained in human tumor cells, irrespective of p53 status. In summary, our results show that defective synthesis of canonical microRNAs results in cell‐cycle arrest and cellular senescence in primary fibroblasts mediated by specific miRNAs, and thus identify global miRNA disruption as a novel senescence trigger. 相似文献
3.
4.
5.
Moderate, transient oxidative stress is achieved in SH-SY5Y cells using tertiary butylhydroperoxide as oxidant. Over a recovery period of 24 h, the enzymatic activity and protein levels of the acetylcholinesterase (AChE) splice variants tailed AChE (AChE-T) and readthrough AChE (AChE-R) are monitored. Their time-dependent correlation to pro- and anti-apoptotic factors, namely caspase 3 and Bcl-2, respectively, as well as lactate dehydrogenase release as a measure of cell viability is assessed. A distinctly different expression pattern of AChE-T as compared with AChE-R is recorded, in that AChE-T shows only a very slight increase over a 6 h time period. In contrast, AChE-R rises continuously during the recovery period, reaching peak intracellular levels that are up to six times higher than control levels 3-4 h post-stress, and is released from cells in substantial amounts. Moreover, anti-apoptotic Bcl-2 increases significantly, peaking 2-3 h after this AChE-R peak has occurred. We believe this study presents the first work that demonstrates - without relying on techniques of over-expression - the time-dependent correlation between apoptotic processes and related rescue mechanisms involving AChE isoforms in a neuronal cell line. 相似文献
6.
Identification of miR‐93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients 下载免费PDF全文
Simone E. Barry Brian Chan Magda Ellis YuRong Yang Marshall L. Plit Guangyu Guan Xiaolin Wang Warwick J. Britton Bernadette M. Saunders 《Journal of cellular and molecular medicine》2015,19(7):1606-1613
Tuberculosis (TB) remains a major public health issue. New tests to aid diagnoses and monitor the response to therapy are urgently required. There is growing interest in the use of microRNA (miRNA) profiles as diagnostic, prognostic or predictive markers in a range of clinical and infectious diseases, including Mycobacterium tuberculosis infection, however, challenges exist to accurately normalise miRNA levels in cohorts. This study examined the appropriateness of 12 miRs and RNU6B to normalise circulating plasma miRNA levels in individuals with active TB from 2 different geographical and ethnic regions. Twelve miRs (let‐7, miR‐16, miR‐22, miR‐26, miR‐93, miR‐103, miR‐191, miR‐192, miR‐221, miR‐423, miR‐425 and miR‐451) and RNU6B were selected based on their reported production by lung cells, expression in blood and previous use as a reference miRNA. Expression levels were analysed in the plasma of newly diagnosed TB patients from Australia and China compared with individuals with latent TB infection and healthy volunteers. Analysis with both geNorm and NormFinder software identified miR‐93 as the most suitable reference miR in both cohorts, either when analysed separately or collectively. Interestingly, there were large variations in the expression levels of some miRs, in particular miR‐192 and let‐7, between the two cohorts, independent of disease status. These data identify miR‐93 is a suitable reference miR for normalizing miRNA levels in TB patients, and highlight how environmental, and possibly ethnic, factors influence miRNA expression levels, demonstrating the necessity of assessing the suitability of reference miRs within the study population. 相似文献
7.
Wootz H Hansson I Korhonen L Näpänkangas U Lindholm D 《Biochemical and biophysical research communications》2004,325(1):281-286
Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic beta-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length alpha-helical conformation between residues F(6) and A(28). This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists. 相似文献
8.
The cause(s) of amyotrophic lateral sclerosis (ALS) is not fully understood in the vast majority of cases and the mechanisms involved in motor neuron degeneration are multi-factorial and complex. There is substantial evidence to support the hypothesis that oxidative stress is one mechanism by which motor neuron death occurs. This theory becomes more persuasive with the discovery that mutation of the anti-oxidant enzyme, superoxide dismutase 1 (SOD1), causes disease in a significant minority of cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration have not been defined with certainty, and trials of anti-oxidant therapies have been disappointing. Here, we review the evidence implicating oxidative stress in ALS pathogenesis, discuss how oxidative stress may affect and be affected by other proposed mechanisms of neurodegeneration, and review the trials of various anti-oxidants as potential therapies for ALS. 相似文献
9.
10.
Ultra‐sensitive fluorescent sensor for intracellular miRNA based on enzyme‐free signal amplification with carbon nitride nanosheet as a carrier 下载免费PDF全文
Xianjiu Liao Zhenzhong Li Tingting Peng Jie Li Fengying Qin Zuliang Huang 《Luminescence》2017,32(8):1411-1416
A novel ultra‐sensitive fluorescent sensor for monitoring microRNA (miRNA) in living cells was constructed by utilizing a hybridization chain reaction (HCR) as the signal amplification with a carbon nitride nanosheet (CNNS) as a carrier. The Cy5‐labeled hairpin DNA could be adsorbed onto the surface of CNNS, resulting in fluorescence quenching of Cy5. When treated with complementary miRNA, the fluorescence was recovered because miRNA could efficiently trigger an HCR, which led to the release of the HCR products from the CNNS. This intracellular HCR strategy can be used for ultra‐sensitive monitoring of intracellular miRNA. The main advantages of the proposed method are its simplicity, high sensitivity, high specificity and low toxicity for monitoring low‐level biomarkers. 相似文献
11.
Long‐Bang Chen 《Journal of cellular and molecular medicine》2014,18(10):1913-1926
MicroRNAs are endogenous, small (18–25 nucleotides) non‐coding RNAs, which regulate genes expression by directly binding to the 3′‐untranslated regions of the target messenger RNAs. Emerging evidence shows that alteration of microRNAs is involved in cancer development. MicroRNA‐145 is commonly down‐regulated in many types of cancer, regulating various cellular processes, such as the cell cycle, proliferation, apoptosis and invasion, by targeting multiple oncogenes. This review aims to summarize the recent published literature on the role of microRNA‐145 in regulating tumourigenesis and progression, and explore its potential for cancer diagnosis, prognosis and treatment. 相似文献
12.
Cross‐sectional relations of whole‐blood miRNA expression levels and hand grip strength in a community sample 下载免费PDF全文
Joanne M. Murabito Jian Rong Kathryn L. Lunetta Tianxiao Huan Honghuang Lin Qiang Zhao Jane E. Freedman Kahraman Tanriverdi Daniel Levy Martin G. Larson 《Aging cell》2017,16(4):888-894
MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community‐based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed‐effects regression modeling of grip strength (kg) versus continuous miRNA ‘Cq’ values and versus binary miRNA expression was performed. We conducted an integrative miRNA–mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA–grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR‐20a‐5p (FDR q 1.8 × 10?6) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR‐126‐3p, miR‐30a‐5p, and miR‐30d‐5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin‐mediated proteolysis. Our comprehensive assessment in a community‐based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength. 相似文献
13.
Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin‐2 to induce motor neuron dysfunction and cell death 下载免费PDF全文
Chantal Sellier Maria‐Letizia Campanari Camille Julie Corbier Angeline Gaucherot Isabelle Kolb‐Cheynel Mustapha Oulad‐Abdelghani Frank Ruffenach Adeline Page Sorana Ciura Edor Kabashi Nicolas Charlet‐Berguerand 《The EMBO journal》2016,35(12):1276-1297
An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS‐FTD). Ataxin‐2 with intermediate length of polyglutamine expansions (Ataxin‐2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP‐43 and P62 proteins, which are histopathological hallmarks of ALS‐FTD. SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin‐2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin‐2 toxicity, suggesting a double‐hit pathological mechanism in ALS‐FTD. 相似文献
14.
H<Subscript>2</Subscript>O<Subscript>2</Subscript>-induced higher order chromatin degradation: A novel mechanism of oxidative genotoxicity 总被引:2,自引:0,他引:2
Konat GW 《Journal of biosciences》2003,28(1):57-60
The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic excision of chromatin loops and their oligomers at matrix-attachment regions. The activation of endonuclease that catalyzes HOCD is a signalling event triggered specifically by H2O2. The activation is not mediated by an influx of calcium ions, but resting concentrations of intracellular calcium ions are required for the maintenance of the endonuclease in an active form. Although H2O2-induced HOCD can efficiently dismantle the genome leading to cell death, under sublethal oxidative stress conditions H2O2-induced HOCD may be the major source of somatic mutations. 相似文献
15.
16.
17.
CircRNAs: a regulator of cellular stress 总被引:1,自引:0,他引:1
Joseph W. Fischer 《Critical reviews in biochemistry and molecular biology》2017,52(2):220-233
18.
Helen R. Broom Jessica A. O. Rumfeldt Kenrick A. Vassall Elizabeth M. Meiering 《Protein science : a publication of the Protein Society》2015,24(12):2081-2089
Neurotoxic misfolding of Cu, Zn‐superoxide dismutase (SOD1) is implicated in causing amyotrophic lateral sclerosis, a devastating and incurable neurodegenerative disease. Disease‐linked mutations in SOD1 have been proposed to promote misfolding and aggregation by decreasing protein stability and increasing the proportion of less folded forms of the protein. Here we report direct measurement of the thermodynamic effects of chemically and structurally diverse mutations on the stability of the dimer interface for metal free (apo) SOD1 using isothermal titration calorimetry and size exclusion chromatography. Remarkably, all mutations studied, even ones distant from the dimer interface, decrease interface stability, and increase the population of monomeric SOD1. We interpret the thermodynamic data to mean that substantial structural perturbations accompany dimer dissociation, resulting in the formation of poorly packed and malleable dissociated monomers. These findings provide key information for understanding the mechanisms and energetics underlying normal maturation of SOD1, as well as toxic SOD1 misfolding pathways associated with disease. Furthermore, accurate prediction of protein–protein association remains very difficult, especially when large structural changes are involved in the process, and our findings provide a quantitative set of data for such cases, to improve modelling of protein association. 相似文献
19.
Yeo Wool Kang Yoon Suk Kim Jun Young Park Ga‐eul Chu Young Chul Yang Byung Young Choi Won Gil Cho 《Cell biology international》2020,44(6):1394-1404
Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia‐induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2). Both the hypoxic gas mixture (1% O2) and chemical hypoxia‐induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia‐mediated activation of caspase‐1. Active caspase‐1 induced the classical caspase‐dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase‐3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase‐1/classical caspase‐dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase‐3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia. 相似文献
20.
Shinji Higashi Tomohiro Kabuta Yoshitaka Nagai Yukihiro Tsuchiya Haruhiko Akiyama Keiji Wada 《Journal of neurochemistry》2013,126(2):288-300
TAR DNA‐binding protein 43 (TDP‐43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the physiological roles of TDP‐43 in the complex translational regulation mechanisms, we exposed cultured cells to oxidative stress induced by sodium arsenite (ARS) for different periods of time, leading to non‐lethal or sublethal injury. Polysome profile analysis revealed that ARS‐induced stress caused the association of TDP‐43 with stalled ribosomes via binding to mRNA, which was not found under the steady‐state condition. When the cells were exposed to short‐term/non‐lethal stress, TDP‐43 associating with ribosomes localized to stress granules (SGs); this association was transient because it was immediately dissolved by the removal of the stress. In contrast, when the cells were exposed to long‐term/sublethal stress, TDP‐43 was excluded from SGs and shifted to the heavy fractions independent of any binding to mRNA. In these severely stressed cells, biochemical alterations of TDP‐43, such as increased insolubility and disulfide bond formation, were irreversible. TDP‐43 was finally phosphorylated via the ARS‐induced c‐jun N‐terminal kinase pathway. In TDP‐43‐silenced cells, stalled mRNA and poly (A)+ RNA stability was disturbed and cytotoxicity increased under sublethal stress. Thus, TDP‐43 associates with stalled ribosomes and contributes to cell survival during cellular stress. 相似文献