共查询到20条相似文献,搜索用时 173 毫秒
1.
The CMG complex composed of Mcm2-7, Cdc45 and GINS is postulated to be the eukaryotic replicative DNA helicase, whose activation requires sequential recruitment of replication proteins onto Mcm2-7. Current models suggest that Mcm10 is involved in assembly of the CMG complex, and in tethering of DNA polymerase α at replication forks. Here, we report that Mcm10 is required for origin DNA unwinding after association of the CMG components with replication origins in fission yeast. A combination of promoter shut-off and the auxin-inducible protein degradation (off-aid) system efficiently depleted cellular Mcm10 to <0.5% of the wild-type level. Depletion of Mcm10 did not affect origin loading of Mcm2-7, Cdc45 or GINS, but impaired recruitment of RPA and DNA polymerases. Mutations in a conserved zinc finger of Mcm10 abolished RPA loading after recruitment of Mcm10. These results show that Mcm10, together with the CMG components, plays a novel essential role in origin DNA unwinding through its zinc-finger function. 相似文献
2.
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase. 相似文献
3.
E. Rampakakis D. Di Paola M.K. Chan M. Zannis‐Hadjopoulos 《Journal of cellular biochemistry》2009,108(2):400-407
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre‐replication complex (pre‐RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late‐activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post‐translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early‐ and late‐firing origins as well as between human‐ and monkey‐derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity. J. Cell. Biochem. 108: 400–407, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
Pre‐initiation complex assembly functions as a molecular switch that splits the Mcm2‐7 double hexamer 下载免费PDF全文
Initiation of chromosomal DNA replication in eukaryotes involves two steps: licensing and firing. In licensing, a core component of the replicative helicase, the Mcm2–7 complex, is loaded onto replication origins as an inactive double hexamer, which is activated in the firing step by firing factors. A reaction intermediate called the pre‐initiation complex (pre‐IC) has been proposed to assemble transiently during firing, but the existence of the pre‐IC has not yet been confirmed. Here, we show, by systematic chromatin immunoprecipitation, that a distinct intermediate that fits the definition of the pre‐IC assembles during firing in the budding yeast Saccharomyces cerevisiae. Pre‐IC assembly is observed in the absence of Mcm10, one of the firing factors, and is mutually dependent on all the firing factors whose association to replication origins is triggered by cyclin‐dependent kinase. In the pre‐IC, the Mcm2–7 double hexamer is separated into single hexamers, as in the active helicase. Our data indicate that pre‐IC assembly functions as an all‐or‐nothing molecular switch that splits the Mcm2–7 double hexamer. 相似文献
5.
Zhiying You Koji L. Ode Mayumi Shindo Haruhiko Takisawa Hisao Masai 《Cell cycle (Georgetown, Tex.)》2016,15(9):1213-1226
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2~7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity. 相似文献
6.
Nicholas Simon Matthew?L. Bochman Sandlin Seguin Jeffrey?L. Brodsky William?L. Seibel Anthony Schwacha 《Bioscience reports》2013,33(5)
Most currently available small molecule inhibitors of DNA replication lack enzymatic specificity, resulting in deleterious side effects during use in cancer chemotherapy and limited experimental usefulness as mechanistic tools to study DNA replication. Towards development of targeted replication inhibitors, we have focused on Mcm2-7 (minichromosome maintenance protein 2–7), a highly conserved helicase and key regulatory component of eukaryotic DNA replication. Unexpectedly we found that the fluoroquinolone antibiotic ciprofloxacin preferentially inhibits Mcm2-7. Ciprofloxacin blocks the DNA helicase activity of Mcm2-7 at concentrations that have little effect on other tested helicases and prevents the proliferation of both yeast and human cells at concentrations similar to those that inhibit DNA unwinding. Moreover, a previously characterized mcm mutant (mcm4chaos3) exhibits increased ciprofloxacin resistance. To identify more potent Mcm2-7 inhibitors, we screened molecules that are structurally related to ciprofloxacin and identified several that compromise the Mcm2-7 helicase activity at lower concentrations. Our results indicate that ciprofloxacin targets Mcm2-7 in vitro, and support the feasibility of developing specific quinolone-based inhibitors of Mcm2-7 for therapeutic and experimental applications. 相似文献
7.
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits. 相似文献
8.
9.
10.
Mutations in RECQ4, a member of the RecQ family of DNA helicases, have been linked to the progeroid disease Rothmund–Thomson Syndrome. Attempts to understand the complex phenotypes observed in recq4‐deficient cells suggest a potential involvement in DNA repair and replication, yet the molecular basis of the function of RECQ4 in these processes remains unknown. Here, we report the identification of a highly purified chromatin‐bound RECQ4 complex from human cell extracts. We found that essential replisome factors MCM10, MCM2‐7 helicase, CDC45 and GINS are the primary interaction partner proteins of human RECQ4. Importantly, complex formation and the association of RECQ4 with the replication origin are cell‐cycle regulated. Furthermore, we show that MCM10 is essential for the integrity of the RECQ4–MCM replicative helicase complex. MCM10 interacts directly with RECQ4 and regulates its DNA unwinding activity, and that this interaction may be modulated by cyclin‐dependent kinase phosphorylation. Thus, these studies show that RECQ4 is an integral component of the MCM replicative helicase complex participating in DNA replication in human cells. 相似文献
11.
Mcm10 is essential for chromosome replication in eukaryotic cells and was previously thought to link the Mcm2-7 DNA helicase at replication forks to DNA polymerase alpha. Here, we show that yeast Mcm10 interacts preferentially with the fraction of the Mcm2-7 helicase that is loaded in an inactive form at origins of DNA replication, suggesting a role for Mcm10 during the initiation of chromosome replication, but Mcm10 is not a stable component of the replisome subsequently. Studies with budding yeast and human cells indicated that Mcm10 chaperones the catalytic subunit of polymerase alpha and preserves its stability. We used a novel degron allele to inactivate Mcm10 efficiently and this blocked the initiation of chromosome replication without causing degradation of DNA polymerase alpha. Strikingly, the other essential helicase subunits Cdc45 and GINS were still recruited to Mcm2-7 when cells entered S-phase without Mcm10, but origin unwinding was blocked. These findings indicate that Mcm10 is required for a novel step during activation of the Cdc45-MCM-GINS helicase at DNA replication origins. 相似文献
12.
13.
Zhengke Li Bochao Liu Weiwei Jin Xiwei Wu Mian Zhou Ajay Goel Zhiyuan Shen Li Zheng Binghui Shen 《The EMBO journal》2018,37(14)
DNA2 is a nuclease/helicase that is involved in Okazaki fragment maturation, replication fork processing, and end resection of DNA double‐strand breaks. Similar such helicase activity for resolving secondary structures and structure‐specific nuclease activity are needed during DNA replication to process the chromosome‐specific higher order repeat units present in the centromeres of human chromosomes. Here, we show that DNA2 binds preferentially to centromeric DNA. The nuclease and helicase activities of DNA2 are both essential for resolution of DNA structural obstacles to facilitate DNA replication fork movement. Loss of DNA2‐mediated clean‐up mechanisms impairs centromeric DNA replication and CENP‐A deposition, leading to activation of the ATR DNA damage checkpoints at centromeric DNA regions and late‐S/G2 cell cycle arrest. Cells that escape arrest show impaired metaphase plate formation and abnormal chromosomal segregation. Furthermore, the DNA2 inhibitor C5 mimics DNA2 knockout and synergistically kills cancer cells when combined with an ATR inhibitor. These findings provide mechanistic insights into how DNA2 supports replication of centromeric DNA and give further insights into new therapeutic strategies. 相似文献
14.
15.
16.
17.
Jun-Sub Im Soon-Young Park Won-Ho Cho Sung-Ho Bae Jerard Hurwitz Joon-Kyu Lee 《Cell cycle (Georgetown, Tex.)》2015,14(7):1001-1009
Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells. 相似文献
18.
Man Zhu Liu Yang Xianpeng Shi Zhengyan Gong Runze Yu Dongdong Zhang Yanmin Zhang Weina Ma 《Journal of cellular and molecular medicine》2020,24(1):984-995
IL‐2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti‐cancer effect. Here, we demonstrated the anti‐cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL‐2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL‐2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL‐2R and down‐regulated the mRNA and protein levels of IL‐2R. Furthermore, TPD7 suppressed the downstream cascades of IL‐2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl‐2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti‐cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL‐2R signalling pathway. 相似文献
19.