共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ming‐Jen Hsu Yi‐Hsuan Wang Joen‐Rong Sheu 《Journal of cellular and molecular medicine》2014,18(7):1278-1289
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases. 相似文献
3.
β‐Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP‐activated protein kinase‐dependent increase in autophagy 下载免费PDF全文
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway. 相似文献
4.
5.
6.
Specificity of presenilin‐1‐ and presenilin‐2‐dependent γ‐secretases towards substrate processing 下载免费PDF全文
Bernadette Tasiaux Claudia Marinangeli Helena Karlström Pascal Kienlen‐Campard 《Journal of cellular and molecular medicine》2018,22(2):823-833
The two presenilin‐1 (PS1) and presenilin‐2 (PS2) homologs are the catalytic core of the γ‐secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1‐ and PS2‐dependent γ‐secretases to the production of β‐amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ‐secretase substrates. To that end, we studied PS1‐ and PS2‐dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1‐PS2 double‐KO noted PSdKO) or stably re‐expressing human PS1 or PS2 in an endogenous PS‐null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L‐685,458). We found that murine PS1 γ‐secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ‐secretase. The inhibitors blocked more efficiently murine PS2‐ than murine PS1‐dependent processing. Human PSs, especially human PS1, expression in a PS‐null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1‐ than human PS2‐dependent γ‐secretase activity. 相似文献
7.
Opposing roles of Ubp3‐dependent deubiquitination regulate replicative life span and heat resistance 下载免费PDF全文
The interplay between molecular chaperones, ubiquitin/deubiquitinating enzymes, and proteasomes is a critical element in protein homeostasis. Among these factors, the conserved deubiquitinase, Ubp3, has the interesting ability, when overproduced, to suppress the requirement for the major cytosolic Hsp70 chaperones. Here, we show that Ubp3 overproduction counteracts deficiency of Hsp70s by the removal of damaged proteins deposited in inclusion bodies (JUNQ) during both aging and heat stress. Consistent with this, Ubp3 destabilized, deubiquitinated, and diminished the toxicity of the JUNQ-associated misfolded protein Ubc9ts in a proteasome-dependent manner. In contrast, another misfolded model protein, ssCPY*, was stabilized by Ubp3-dependent deubiquitination demonstrating a dual role for Ubp3, saving or destroying aberrant protein species depending on the stage at which the damaged protein is committed for destruction. We present genetic evidence for the former of these activities being key to Ubp3-dependent suppression of heat sensitivity in Hsp70-deficient cells, whereas protein destruction suppresses accelerated aging. We discuss the data in view of how heat stress and aging might elicit differential damage and challenges on the protein homeostasis network. 相似文献
8.
Phosphopeptide binding by Sld3 links Dbf4‐dependent kinase to MCM replicative helicase activation 下载免费PDF全文
The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45‐MCM‐GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK‐dependent manner. Sld3 binds specifically to DDK‐phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho‐MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK‐independent replication. Thus, Sld3 is an essential “reader” of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. 相似文献
9.
10.
Mitochondrial PKC‐ε deficiency promotes I/R‐mediated myocardial injury via GSK3β‐dependent mitochondrial permeability transition pore opening 下载免费PDF全文
Gang Zhao Yong Cheng Ting Wu Bing Wu You‐en Zhang 《Journal of cellular and molecular medicine》2017,21(9):2009-2021
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress. 相似文献
11.
12.
Xiao‐Bo Hu Gui‐Qing Li Shi‐Fang Dong Gui‐Lian Xu Ke‐Qin Zhang 《Journal of cellular and molecular medicine》2016,20(10):1861-1871
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway. 相似文献
13.
14.
15.
16.
17.
A protective role of ciglitazone in ox‐LDL‐induced rat microvascular endothelial cells via modulating PPARγ‐dependent AMPK/eNOS pathway 下载免费PDF全文
Lei Xu Shijun Wang Bingyu Li Aijun Sun Yunzeng Zou Junbo Ge 《Journal of cellular and molecular medicine》2015,19(1):92-102
Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox‐LDL receptor‐1 (LOX‐1) plays a central role in ox‐LDL‐mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox‐LDL through regulating eNOS activity and LOX‐1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox‐LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox‐LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre‐treatment. Meanwhile, phosphorylation of AMP‐activated protein kinase (AMPK) was suppressed by ox‐LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone‐mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone‐mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX‐1 protein expression in RMVECs was suppressed by ciglitazone, but re‐enhanced by blocking PPARγ or AMPK. Ox‐LDL‐induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX‐1. Collectively, these data demonstrate that ciglitazone‐mediated PPARγ activation suppresses LOX‐1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation. 相似文献
18.
A lycopene β‐cyclase/lycopene ε‐cyclase/light‐harvesting complex‐fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α‐carotene and β‐carotene at different ratios 下载免费PDF全文
Martin Lohr 《The Plant journal : for cell and molecular biology》2015,82(4):582-595
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi. 相似文献
19.
20.
Mayuko Nishimura Caroline Kumsta Gaurav Kaushik Soda B. Diop Yun Ding Jumana Bisharat‐Kernizan Hannah Catan Anthony Cammarato Robert S. Ross Adam J. Engler Rolf Bodmer Malene Hansen Karen Ocorr 《Aging cell》2014,13(3):431-440
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity. 相似文献