首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells.  相似文献   

2.
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration.  相似文献   

3.
Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2‐deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2‐positive and TSC2‐negative mouse embryonic fibroblasts (MEF), 323‐TSC2‐positive and 323‐TSC2‐null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time‐lapse microscopy and manual cell counts respectively. RhoA‐GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2‐negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2‐null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA‐GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2‐null cell migration. Thus doxycycline has potential as an anti‐migratory agent in the treatment of diseases with TSC2 dysfunction.  相似文献   

4.
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists cause cell death in several types of cancer cells. The aim of this study was to examine the effects of two PPARgamma agonists, ciglitazone and 15-deoxy-delta(12,14)-prostaglandin J2 (15dPGJ2), on the survival of thyroid carcinoma CGTH W-2 cells. Both ciglitazone and 15dPGJ2 decreased cell viability in a time- and dose-dependent manner. Cell death was mainly due to apoptosis, with a minor contribution from necrosis. Increased levels of active caspase 3, cleaved poly (ADP-ribose) polymerase (PARP), and cytosolic cytochrome-c were noted. In addition, ciglitazone and 15dPGJ2 induced detachment of CGTH W-2 cells from the culture substratum. Both the protein levels and immunostaining signals of focal adhesion (FA) proteins, including vinculin, integrin beta1, focal adhesion kinase (FAK), and paxillin were decreased after PPARgamma agonist treatment. Meanwhile, reduced phosphorylation of FAK and paxillin was noted. Furthermore, PPARgamma agonists induced expression of protein tyrosine phosphatase-PEST (PTP-PEST), and of phosphatase and tensin homologue deleted on chromosome ten (PTEN). The upregulation of these phosphatases might contribute to the dephosphorylation of FAK and paxillin, since pre-treatment with orthovanadate prevented PPARgamma agonist-induced dephosphorylation of FAK and paxillin. Perturbation of CGTH W-2 cells with anti-integrin beta1 antibodies induced FA disruption and apoptosis in the same cells, thus the downregulation of integrin beta1 by PPARgamma agonists resulted in FA disassembly and might induce apoptosis via anoikis. Our results suggested the presence of crosstalk between apoptosis and integrin-FA signaling. Moreover, upregulation and activation of PTEN was correlated with reduced phosphorylation of Akt, and this consequence disfavored cell survival. In conclusion, PPARgamma agonists induced apoptosis of thyroid carcinoma cells via the cytochrome-c caspase 3 and PTEN-Akt pathways, and induced necrosis via the PARP pathway.  相似文献   

5.
The focal adhesion kinase (FAK) and the proline‐rich tyrosine kinase 2‐beta (PYK2) are implicated in cancer progression and metastasis and represent promising biomarkers and targets for cancer therapy. FAK and PYK2 are recruited to focal adhesions (FAs) via interactions between their FA targeting (FAT) domains and conserved segments (LD motifs) on the proteins Paxillin, Leupaxin, and Hic‐5. A promising new approach for the inhibition of FAK and PYK2 targets interactions of the FAK domains with proteins that promote localization at FAs. Advances toward this goal include the development of surface plasmon resonance, heteronuclear single quantum coherence nuclear magnetic resonance (HSQC‐NMR) and fluorescence polarization assays for the identification of fragments or compounds interfering with the FAK‐Paxillin interaction. We have recently validated this strategy, showing that Paxillin mimicking polypeptides with 2 to 3 LD motifs displace FAK from FAs and block kinase‐dependent and independent functions of FAK, including downstream integrin signaling and FA localization of the protein p130Cas. In the present work we study by all‐atom molecular dynamics simulations the recognition of peptides with the Paxillin and Leupaxin LD motifs by the FAK‐FAT and PYK2‐FAT domains. Our simulations and free‐energy analysis interpret experimental data on binding of Paxillin and Leupaxin LD motifs at FAK‐FAT and PYK2‐FAT binding sites, and assess the roles of consensus LD regions and flanking residues. Our results can assist in the design of effective inhibitory peptides of the FAK‐FAT: Paxillin and PYK2‐FAT:Leupaxin complexes and the construction of pharmacophore models for the discovery of potential small‐molecule inhibitors of the FAK‐FAT and PYK2‐FAT focal adhesion based functions.  相似文献   

6.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   

7.
Repigmentation of vitiliginous lesions relies on the proliferation and migration of melanoblasts from hair follicles to the epidermis. Pulsed ultrasound has been demonstrated to have stimulatory effects on cell proliferation and migration and has been applied clinically to enhance tissue repair. To clarify the biologic effects and signaling mechanisms of pulsed ultrasound on melanoblast proliferation and migration, two melanoblast cell lines, the undifferentiated NCCmelb4 cells and the differentiated NCCmelan5 cells, were examined. We demonstrated that pulsed ultrasound increased cell migration in a dose‐dependent manner without altering cell proliferation. Pulsed ultrasound enhanced autocrine secretion of macrophage colony‐stimulating factor (M‐CSF), which subsequently activated the focal adhesion kinase (FAK) pathway to promote melanoblast migration. Furthermore, conditioned medium from mouse embryonic fibroblasts NIH 3T3 and primary human keratinocytes treated with pulsed ultrasound could stimulate melanoblast migration through a paracrine effect. Our results provide a novel mechanism to promote migration of melanoblasts by pulsed ultrasound stimulation.  相似文献   

8.
Early steps in myelination in the central nervous system (CNS) include a specialized and extreme form of cell spreading in which oligodendrocytes extend large lamellae that spiral around axons to form myelin. Recent studies have demonstrated that laminin-2 (LN-2; alpha2beta1gamma1) stimulates oligodendrocytes to extend elaborate membrane sheets in vitro (cell spreading), mediated by integrin alpha6beta1. Although a congenital LN-2 deficiency in humans is associated with CNS white matter changes, LN-2-deficient (dy/dy) mice have shown abnormalities primarily within the peripheral nervous system. Here, we demonstrate a critical role for LN-2 in CNS myelination by showing that dy/dy mice have quantitative and morphologic defects in CNS myelin. We have defined the molecular pathway through which LN-2 signals oligodendrocyte cell spreading by demonstrating requirements for phosphoinositide 3-kinase activity and integrin-linked kinase (ILK). Interaction of oligodendrocytes with LN-2 stimulates ILK activity. A dominant negative ILK inhibits LN-2-induced myelinlike membrane formation. A critical component of the myelination signaling cascade includes LN-2 and integrin signals through ILK.  相似文献   

9.
BRAK/CXCL14 (breast‐ and kidney‐expressed chemokine/CXC chemokine ligand 14) is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues, including HNSCC (head and neck squamous cell carcinoma). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC (HSC‐3 BRAK) cells decreased the rate of tumour formation and size of tumour xenografts compared with mock‐vector‐introduced (HSC‐3 Mock) cells in athymic nude mice, even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that high‐level expression of the gene is important for the suppression of tumour establishment in vivo. For the first step to study the mechanisms of BRAK‐dependent tumour suppression, we compared characteristics between HSC‐3 BRAK and HSC‐3 Mock cells under in vitro culture conditions. The cell migration rate was lower in HSC‐3 BRAK cells than in HSC‐3 Mock cells. Also, HSC‐3 BRAK cells showed more rapid adhesion than HSC‐3 Mock cells when cultured on type I collagen‐coated dishes but not on fibronectin or laminin 1‐coated ones. This adhesion was mediated by α2β1 integrin. Immunofluorescent analysis of the cells cultured on type I collagen showed that HSC‐3 BRAK cells formed much more elongated focal adhesions co‐localized with paxillin and actin stress fibres than did HSC‐3 Mock cells. Treatment of parental HSC‐3 cells with recombinant BRAK stimulated the activation of Rap1, which is a ras family small GTPase, and formation of elongated focal adhesions, indicating that the difference in cell character observed between HSC‐3 Mock and HSC‐3 BRAK was not due to selection of clones of different character but due to expression of BRAK in the cells. The characteristic morphology of focal adhesions in HSC‐3 BRAK cells was perturbed by the introduction of an expression vector of the Rap‐binding domain of the Ral guanine nucleotide dissociation stimulator, a target of Rap1, into HSC‐3 BRAK cells, suggesting that Rap1 regulated the formation of the morphology of the focal adhesions. These data indicate that the expression of BRAK stimulated the formation of elongated focal adhesions of the HSC‐3 cells in an autocrine or paracrine fashion, in which stimulation may be responsible for the reduced migration of the cells.  相似文献   

10.
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is required specifically for integrin-mediated signaling. Membrane traffic was inhibited in Chinese hamster ovary cells by expression of dominant-negative (E329Q) N-ethylmaleimide-sensitive fusion protein (NSF) or a truncated form of the SNARE SNAP23. Integrin signaling was monitored as cells were plated on fibronectin under serum-free conditions. E329Q-NSF expression inhibited phosphorylation of focal adhesion kinase (FAK) on Tyr397 at early time points of adhesion. Phosphorylation of FAK on Tyr576, Tyr861 and Tyr925 was also impaired by expression of E329Q-NSF or truncated SNAP23, as was trafficking, localization and activation of Src and its interaction with FAK. Decreased FAK-Src interaction coincided with reduced Rac activation, decreased focal adhesion turnover, reduced Akt phosphorylation and lower phosphatidylinositol 3,4,5-trisphosphate levels in the cell periphery. Over-expression of plasma membrane-targeted Src or phosphatidylinositol 3-kinase (PI3K) rescued cell spreading and focal adhesion turnover. The results suggest that SNARE-dependent trafficking is required for integrin signaling through a FAK/Src/PI3K-dependent pathway.  相似文献   

11.
12.
Microtubule‐depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule‐depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046‐induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock‐down expression of FAK inhibited IMB5046‐induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF‐H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046‐induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule‐depolymerizing agents to be used as vascular disrupting agents.  相似文献   

13.
The parkin‐associated endothelial‐like receptor (PAELR, GPR37) is an orphan G protein‐coupled receptor that interacts with and is degraded by parkin‐mediated ubiquitination. Mutations in parkin are thought to result in PAELR accumulation and increase neuronal cell death in Parkinson's disease. In this study, we find that the protein interacting with C‐kinase (PICK1) interacts with PAELR. Specifically, the Postsynaptic density protein‐95/Discs large/ZO‐1 (PDZ) domain of PICK1 interacted with the last three residues of the c‐terminal (ct) located PDZ motif of PAELR. Pull‐down assays indicated that recombinant and native PICK1, obtained from heterologous cells and rat brain tissue, respectively, were retained by a glutathione S‐transferase fusion of ct‐PAELR. Furthermore, coimmunoprecipitation studies isolated a PAELR‐PICK1 complex from transiently transfected cells. PICK1 interacts with parkin and our data showed that PICK1 reduces PAELR expression levels in transiently transfected heterologous cells compared to a PICK1 mutant that does not interact with PAELR. Finally, PICK1 over‐expression in HEK293 cells reduced cell death induced by PAEALR over‐expression during rotenone treatment and these effects of PICK1 were attenuated during inhibition of the proteasome. These results suggest a role for PICK1 in preventing PAELR‐induced cell toxicity.

  相似文献   


14.
PDZ domain‐containing proteins (PDZ proteins) act as scaffolds for protein–protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN‐4, a PDZ domain‐containing microtubule‐associated serine‐threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin‐4 is required for the long lifespan of daf‐2/insulin/IGF‐1 receptor mutants. We then show that neurons are crucial tissues for the longevity‐promoting role of kin‐4. We find that the PDZ domain of KIN‐4 binds PTEN, a key factor for the longevity of daf‐2 mutants. Moreover, the interaction between KIN‐4 and PTEN is essential for the extended lifespan of daf‐2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age‐related diseases in mammals through their interaction with PTEN.  相似文献   

15.
Appl1 (Adaptor protein containing pleckstrin homology [PH], phosphotyrosine binding [PTB], and Leucine zipper motifs) is an adaptor that participates in cell signaling by interacting with various signaling molecules including Akt, PI3‐kinase (PI3K), Rab5, adiponectin receptor, and TrkA. By using RNA knockdown technology, Appl1 has been implicated in zebrafish development and murine glucose metabolism. To investigate the unambiguous role of Appl1 in vivo, we generated a knockout mouse in which exon1 of the Appl1 gene was disrupted using gene trap methodology. Homozygous Appl1 knockout mice with ubiquitous loss of Appl1 protein expression were viable, grossly normal, and born at expected Mendelian ratios. Moreover, activation of Akt and the downstream effecter Gsk3β was unaffected in vivo. We next performed glucose and insulin tolerance tests and found that glucose metabolism is normal in Appl1‐null mice. We also tested the effect of Appl1 loss on Akt signaling in T cells, because we discovered that Appl1 strongly interacts with the p110β subunit of PI3K in T lymphocytes. However, such interaction was found to be dispensable for Akt signaling in thymic T cells and T‐cell development. Moreover, Appl1 loss did not affect DNA synthesis in cultured thymocytes, although loss of Appl1 was associated with a slight increase in ConA‐stimulated splenic T‐cell viability/proliferation. Collectively, our findings indicate that Appl1 is dispensable for Akt signaling in vivo and T‐cell differentiation. genesis 48:531–539, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

17.
Mitogen‐activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal–epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular‐signal‐regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross‐talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase‐2, transforming growth factor‐β, NOTCH and (in particular) with phosphatidylinositol 3‐kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK‐targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre‐evaluation of cancer‐type‐specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need.  相似文献   

18.
Focal adhesion kinase (FAK or pp125FAK) is a cytosolic protein tyrosine kinase which plays an important role in integrin‐mediated signal transduction. Adhesion of cells to the substratum correlates with an increase in tyrosine phosphorylation of FAK as well as an associated protein, paxillin. In this report we show that the tyrosine phosphorylation of FAK and paxillin are decreased during dibutyryl cyclic AMP–induced (dB‐cAMP) process formation in astrocytes. When astrocytes in suspension are treated with dB‐cAMP, no alteration in morphology or tyrosine phosphorylation is observed, suggesting that both phenomena are linked and adhesion dependent. Furthermore, genistein, a tyrosine kinase inhibitor, can induce process formation in such cells, underscoring the significance of protein tyrosine kinases in maintaining the morphology of adherent cells. Finally, endothelin‐1, a vasopeptide which is known to inhibit process formation in astrocytes, inhibited the tyrosine dephosphorylation of proteins associated with dB‐cAMP treatment. These results suggest that the formation of asymmetric processes in astrocytes results from a coordinated set of alterations in the actin cytoskeleton as well as the adhesion of the cell to the substratum. Modification of the properties of such molecules is required for process formation and the dynamic modulation of astrocytic morphology in vitro and in vivo. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 407–422, 1999  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号