首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Cell division cycle 5‐like protein (Cdc5L) is a core component of the putative E3 ubiquitin ligase complex containing Prp19/Pso4, Plrg1 and Spf27. This complex has been shown to have a role in pre‐messenger RNA splicing from yeast to humans; however, more recent studies have described a function for this complex in the cellular response to DNA damage. Here, we show that Cdc5L interacts physically with the cell‐cycle checkpoint kinase ataxia‐telangiectasia and Rad3‐related (ATR). Depletion of Cdc5L by RNA‐mediated interference methods results in a defective S‐phase cell‐cycle checkpoint and cellular sensitivity in response to replication‐fork blocking agents. Furthermore, we show that Cdc5L is required for the activation of downstream effectors or mediators of ATR checkpoint function such as checkpoint kinase 1 (Chk1), cell cycle checkpoint protein Rad 17 (Rad17) and Fanconi anaemia complementation group D2 protein (FancD2). In addition, we have mapped the ATR‐binding region in Cdc5L and show that a deletion mutant that is unable to interact with ATR is defective in the rescue of the checkpoint deficiency in Cdc5L‐depleted cells. These findings show a new function for Cdc5L in the regulation of the ATR‐mediated cell‐cycle checkpoint in response to genotoxic agents.  相似文献   

3.
Repair of DNA double‐stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non‐homologous end‐joining (NHEJ) or error‐free homologous recombination. NHEJ precedes either by a classic, Lig4‐dependent process (C‐NHEJ) or an alternative, Lig4‐independent one (A‐NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere‐binding proteins are recognized as DSBs. In this report, we studied which end‐joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end‐to‐end chromosome fusions mediated by the C‐NHEJ pathway. In contrast, removal of Tpp1–Pot1a/b initiated robust chromosome fusions that are mediated by A‐NHEJ. C‐NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A‐NHEJ is a major pathway to process dysfunctional telomeres.  相似文献   

4.
5.
6.
Normal lymphocytes represent examples of somatic cells that are able to induce telomerase activity when stimulated. As previously reported, we showed that, during lymphocyte long-term culture and repeated stimulations, the appearance of senescent cells is associated with telomere shortening and a progressive drop in telomerase activity. We further showed that this shortening preferentially occured at long telomeres and was interrupted at each stimulation by a transitory increase in telomere length. In agreement with the fact that telomere uncapping triggers lymphocyte senescence, we observed an increase in γ-H2AX and 53BP1 foci as well as in the percentage of cells exhibiting DNA damage foci in telomeres. Such a DNA damage response may be related to the continuous increase of p16 ink4a upon cell stimulation and cell aging. Remarkably, at each stimulation, the expression of shelterin genes, such as hTRF1 , hTANK1 , hTIN2 , hPOT1 and hRAP1 , was decreased. We propose that telomere dysfunction during lymphocyte senescence caused by iterative stimulations does not only result from an excessive telomere shortening, but also from a decrease in shelterin content. These observations may be relevant for T-cell biology and aging.  相似文献   

7.
8.
We have developed a plasmid test system to study recombination in vitro and in mammalian cells in vivo, and to analyze the possible role of DNA topoisomerase II. The system is based on a plasmid construct containing an inducible marker gene ccdB ("killer" (KIL) gene) whose product is lethal for bacterial cells, flanked by two different potentially recombinogenic elements. The plasmids were subjected to recombinogenic conditions in vitro or in vivo after transient transfection into COS-1 cells, and subsequently transformed into E. coli which was then grown in the presence of the ccdB gene inducer. Hence, all viable colonies contained recombinant plasmids since only recombination between the flanking regions could remove the KIL gene. Thus, it was possible to detect recombination events and to estimate their frequency. We found that the frequency of topoisomerase II-mediated recombination in vivo is significantly higher than in a minimal in vitro system. The presence of VM-26, an inhibitor of the religation step of the topoisomerase II reaction, increased the recombination frequency by 60%. We propose that cleavable complexes of topoisomerase II are either not religated, triggering error-prone repair of the DNA breaks, or are incorrectly religated resulting in strand exchange. We also studied the influence of sequences known to contain preferential breakpoints for recombination in vivo after chemotherapy with topoisomerase II-targeting drugs, but no preferential stimulation of recombination by these sequences was detected in this non-chromosomal context.  相似文献   

9.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

10.
Coats plus (CP) is a rare autosomal recessive disorder caused by mutations in CTC1, a component of the CST (CTC1, STN1, and TEN1) complex important for telomere length maintenance. The molecular basis of how CP mutations impact upon telomere length remains unclear. The CP CTC1L1142H mutation has been previously shown to disrupt telomere maintenance. In this study, we used CRISPR/Cas9 to engineer this mutation into both alleles of HCT116 and RPE cells to demonstrate that CTC1:STN1 interaction is required to repress telomerase activity. CTC1L1142H interacts poorly with STN1, leading to telomerase‐mediated telomere elongation. Impaired interaction between CTC1L1142H:STN1 and DNA Pol‐α results in increased telomerase recruitment to telomeres and further telomere elongation, revealing that C:S binding to DNA Pol‐α is required to fully repress telomerase activity. CP CTC1 mutants that fail to interact with DNA Pol‐α resulted in loss of C‐strand maintenance and catastrophic telomere shortening. Our findings place the CST complex as an important regulator of both G‐strand extensions by telomerase and C‐strand synthesis by DNA Pol‐α.  相似文献   

11.
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
Cellular aging is characterized by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and activation of DNA damage responses. There is some evidence that DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage, and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging‐associated expression of serum markers of DNA damage (CRAMP, EF‐1α, stathmin, n‐acetyl‐glucosaminidase and chitinase) in comparison with other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age‐independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age‐independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T‐lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging.  相似文献   

15.
Full regeneration of deer antlers, a bona fide epimorphic process in mammals, is in defiance of the general rule of nature. Revealing the mechanism underlying this unique exception would place us in a better position to promote organ regeneration in humans. Antler regeneration takes place in yearly cycles from its pedicle, a permanent protuberance on the frontal bone. Both growing antlers and pedicles consist of internal (cartilage and bone) and external components (skin, blood vessels, and nerves). Recent studies have demonstrated that the regeneration of both internal and external components relies on the presence of pedicle periosteum (PP). PP cells express key embryonic stem cell markers (Oct4, Nanog, and SOX2) and are multipotent, so are termed antler stem cells. Now it is clear that proliferation and differentiation of PP cells directly forms internal antler components; however, how PP initiates and maintains the regeneration of external antler components is thus far not known. Based on the direct as well as indirect evidence that is presented in this review, I put forward the following hypothesis to address this issue. The full regenerative ability of external antler tissue components is achieved through PP‐derived chemical induction and PP‐derived mechanical stimulation: the former triggers the regeneration of these external components, whereas the latter drives their rapid elongation. Eventual identification of the putative PP‐derived chemical factors would open up a new avenue for devising effective therapies for lesions involving each of these tissue components, be they traumatic, degenerative, or linked to developmental (genetic) anomalies. (Part C) 96:51–62, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Huntington's disease (HD) is a late‐onset neurodegenerative disease characterized by a progressive loss of medium spiny neurons in the basal ganglia. The development of stem cell‐based therapies for HD aims to replace lost neurons and/or to prevent cell death. This review will discuss pre‐clinical studies which have utilized stem or progenitor cells for transplantation therapy using HD animal models. In several studies, neural stem and progenitor cells used as allotransplants and xenografts have been shown to be capable of surviving transplantation and differentiating into mature GABAergic neurons, resulting in behavioral improvements. Beneficial effects have also been reported for transplantation of stem cells derived from non‐neural tissue, for example, mesenchymal‐ and adipose‐derived stem cells, which have mainly been attributed to their secretion of growth and neurotrophic factors. Finally, we review studies using stem cells genetically engineered to over‐express defined neurotrophic factors. While these studies prove the potential of stem cells for transplantation therapy in HD, it also becomes clear that technical and ethical issues regarding the availability of stem cells must be solved before human trials can be conducted. J. Cell. Biochem. 114: 754–763, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Polymerase‐blocking DNA lesions are thought to elicit a checkpoint response via accumulation of single‐stranded DNA at stalled replication forks. However, as an alternative to persistent fork stalling, re‐priming downstream of lesions can give rise to daughter‐strand gaps behind replication forks. We show here that the processing of such structures by an exonuclease, Exo1, is required for timely checkpoint activation, which in turn prevents further gap erosion in S phase. This Rad9‐dependent mechanism of damage signaling is distinct from the Mrc1‐dependent, fork‐associated response to replication stress induced by conditions such as nucleotide depletion or replisome‐inherent problems, but reminiscent of replication‐independent checkpoint activation by single‐stranded DNA. Our results indicate that while replisome stalling triggers a checkpoint response directly at the stalled replication fork, the response to replication stress elicited by polymerase‐blocking lesions mainly emanates from Exo1‐processed, postreplicative daughter‐strand gaps, thus offering a mechanistic explanation for the dichotomy between replisome‐ versus template‐induced checkpoint signaling.  相似文献   

18.
In budding yeast Saccharomyces cerevisiae, telomere length maintenance involves a complicated network as more than 280 telomere maintenance genes have been identified in the nonessential gene deletion mutant set. As a supplement, we identified additional 29 telomere maintenance genes, which were previously taken as essential genes. In this study, we report a novel function of Sua5p in telomere replication. Epistasis analysis and telomere sequencing show that sua5Δ cells display progressively shortened telomeres at early passages, and Sua5 functions downstream telomerase recruitment. Further, biochemical, structural and genetic studies show that Sua5p specifically binds single‐stranded telomeric (ssTG) DNA in vitro through a distinct DNA‐binding region on its surface, and the DNA‐binding ability is essential for its telomere function. Thus, Sua5p represents a novel ssTG DNA‐binding protein and positively regulates the telomere length in vivo.  相似文献   

19.
P7, a peptide analogue derived from cell‐penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti‐Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l ‐phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin‐treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC‐P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell''s inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo''s conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo−/−ATM−/− MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5′–3′ exonuclease function of SNM1B/Apollo in the generation of 3′ single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号