首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria are targeted for degradation by mitophagy, a selective form of autophagy. In Saccharomyces cerevisiae, mitophagy is dependent on the autophagy receptor, Atg32, an outer mitochondrial membrane protein. Once activated, Atg32 recruits the autophagy machinery to mitochondria, facilitating mitochondrial capture in phagophores, the precursors to autophagosomes. However, the mechanism of Atg32 activation remains poorly understood. To investigate this crucial step in mitophagy regulation, we examined the structure of Atg32. We have identified a structured domain in Atg32 that is essential for the initiation of mitophagy, as it is required for the proteolysis of the C-terminal domain of Atg32 and the subsequent recruitment of Atg11. The solution structure of this domain was determined by NMR spectroscopy, revealing that Atg32 contains a previously undescribed pseudo-receiver (PsR) domain. Our data suggests that the PsR domain of Atg32 regulates Atg32 activation and the initiation of mitophagy.

Abbreviations:AIM: Atg8-interacting motif; GFP: green fluorescent protein; LIR: LC3-interacting region; NMR: nuclear magnetic resonance; NOESY: nuclear Overhauser effect spectroscopy; PDB: protein data bank; PsR: pseudo-receiver; RMSD: root-mean-square deviation  相似文献   


2.
The selective autophagy receptors Atg19 and Atg32 interact with two proteins of the core autophagic machinery: the scaffold protein Atg11 and the ubiquitin‐like protein Atg8. We found that the Pichia pastoris pexophagy receptor, Atg30, also interacts with Atg8. Both Atg30 and Atg32 interactions are regulated by phosphorylation close to Atg8‐interaction motifs. Extending this finding to Saccharomyces cerevisiae, we confirmed phosphoregulation for the mitophagy and pexophagy receptors, Atg32 and Atg36. Each Atg30 molecule must interact with both Atg8 and Atg11 for full functionality, and these interactions occur independently and not simultaneously, but rather in random order. We present a common model for the phosphoregulation of selective autophagy receptors.  相似文献   

3.
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.  相似文献   

4.
Autophagy is a catabolic cellular process that targets cytosolic material, including mitochondria, to the vacuole or lysosomes for degradation. The selective degradation of mitochondria by autophagy is termed mitophagy. Dysfunctional mitophagy, which leads to the accumulation of damaged mitochondria, has been implicated in Parkinson’s disease, cancer, cardiac disease and metabolic disease. In Saccharomyces cerevisiae, mitophagy is initiated by the autophagy receptor Atg32, an outer mitochondrial membrane protein. A lack of structural information for Atg32 has hindered our understanding of the molecular mechanisms of mitophagy initiation. To gain new structural insight into Atg32, we have identified the location of a structured domain within the cytosolic region of Atg32 and completed the backbone and side chain resonance assignments for this domain.  相似文献   

5.
Mitophagy, the autophagic removal of mitochondria, occurs through a highly selective mechanism. In the yeast Saccharomyces cerevisiae, the mitochondrial outer membrane protein Atg32 confers selectivity for mitochondria sequestration as a cargo by the autophagic machinery through its interaction with Atg11, a scaffold protein for selective types of autophagy. The activity of mitophagy in vivo must be tightly regulated considering that mitochondria are essential organelles that produce most of the cellular energy, but also generate reactive oxygen species that can be harmful to cell physiology. We found that Atg32 was proteolytically processed at its C terminus upon mitophagy induction. Adding an epitope tag to the C terminus of Atg32 interfered with its processing and caused a mitophagy defect, suggesting the processing is required for efficient mitophagy. Furthermore, we determined that the mitochondrial i-AAA protease Yme1 mediated Atg32 processing and was required for mitophagy. Finally, we found that the interaction between Atg32 and Atg11 was significantly weakened in yme1∆ cells. We propose that the processing of Atg32 by Yme1 acts as an important regulatory mechanism of cellular mitophagy activity.  相似文献   

6.
Peroxisomes undergo rapid, selective autophagic degradation (pexophagy) when the metabolic pathways they contain are no longer required for cellular metabolism. Pex3 is central to the formation of peroxisomes and their segregation because it recruits factors specific for these functions. Here, we describe a novel Saccharomyces cerevisiae protein that interacts with Pex3 at the peroxisomal membrane. We name this protein Atg36 as its absence blocks pexophagy, and its overexpression induces pexophagy. We have isolated pex3 alleles blocked specifically in pexophagy that cannot recruit Atg36 to peroxisomes. Atg36 is recruited to mitochondria if Pex3 is redirected there, where it restores mitophagy in cells lacking the mitophagy receptor Atg32. Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that links receptors for selective types of autophagy to the core autophagy machinery. Atg36 delivers peroxisomes to the preautophagosomal structure before being internalised into the vacuole with peroxisomes. We conclude that Pex3 recruits the pexophagy receptor Atg36. This reinforces the pivotal role played by Pex3 in coordinating the size of the peroxisome pool, and establishes its role in pexophagy in S. cerevisiae.  相似文献   

7.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.  相似文献   

8.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase‐deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32–Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.  相似文献   

9.
The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.  相似文献   

10.
《Autophagy》2013,9(8):1203-1205
Degradation of mitochondria is a fundamental process conserved from yeast to humans that utilizes the machinery of autophagy. In contrast to starvation-induced, nonselective autophagy responsible for nutrient recycling, selective autophagy, which involves particular cues and receptors required for induction and cargo recognition, respectively, mediates mitochondria-specific breakdown. Although numerous studies highlight that mitochondria autophagy (mitophagy) contributes to homeostatic control of mitochondria, the molecular mechanisms underlying this selective clearance process are poorly understood. Using a genome-wide visual screen, we identified Atg32, a protein essential for mitophagy in budding yeast. During respiratory growth, Atg32 is highly expressed, likely in response to oxidative stress, and anchored on the surface of mitochondria. We also demonstrate that Atg32 interacts with Atg8 and Atg11, proteins critical for recognition of cargo receptors. Notably, Atg32 contains WXXI/L/V, a conserved motif that serves as a binding site for the Atg8 family members. Our recent findings suggest that Atg32 is a transmembrane receptor that directs autophagosome formation to mitochondria.  相似文献   

11.
Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3‐interacting region (LIR) at the C‐terminus of the protein and a novel motif at the N‐terminus. Although both sites are important for Atg4–Atg8 interaction in vivo, only the new N‐terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE‐bound Atg8.  相似文献   

12.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane‐bound vesicles termed autophagosomes. The conserved Atg5–Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5–Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5–Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre‐autophagosomal structure but is essential for autophagy and cytoplasm‐to‐vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5–Atg12/Atg16 complex during autophagosome formation.  相似文献   

13.
14.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

15.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   

16.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

17.
18.
During autophagy, the transmembrane protein Atg27 facilitates transport of the major autophagy membrane protein Atg9 to the preautophagosomal structure (PAS). To better understand the function of Atg27 and its relationship with Atg9, Atg27 trafficking and localization were examined. Atg27 localized to endosomes and the vacuolar membrane, in addition to previously described PAS, Golgi and Atg9‐positive structures. Atg27 vacuolar membrane localization was dependent on the adaptor AP‐3, which mediates direct transport from the trans‐Golgi to the vacuole. The four C‐terminal amino acids (YSAV) of Atg27 comprise a tyrosine sorting motif. Mutation of the YSAV abrogated Atg27 transport to the vacuolar membrane and affected its distribution in TGN/endosomal compartments, while PAS localization was normal. Also, in atg27(ΔYSAV) or AP‐3 mutants, accumulation of Atg9 in the vacuolar lumen was observed upon autophagy induction. Nevertheless, PAS localization of Atg9 was normal in atg27(ΔYSAV) cells. The vacuole lumen localization of Atg9 was dependent on transport through the multivesicular body, as Atg9 accumulated in the class E compartment and vacuole membrane in atg27(ΔYSAV) vps4Δ but not in ATG27 vps4Δ cells. We suggest that Atg27 has an additional role to retain Atg9 in endosomal reservoirs that can be mobilized during autophagy.   相似文献   

19.
Mitophagy is an evolutionarily conserved autophagy pathway that selectively degrades mitochondria. Although it is well established that this degradation system contributes to mitochondrial quality and quantity control, mechanisms underlying mitophagy remain largely unknown. Here, we report that protein N-terminal acetyltransferase A (NatA), an enzymatic complex composed of the catalytic subunit Ard1 and the adaptor subunit Nat1, is crucial for mitophagy in yeast. NatA is associated with the ribosome via Nat1 and acetylates the second amino acid residues of nascent polypeptides. Mitophagy, but not bulk autophagy, is strongly suppressed in cells lacking Ard1, Nat1, or both proteins. In addition, loss of NatA enzymatic activity causes impairment of mitochondrial degradation, suggesting that protein N-terminal acetylation by NatA is important for mitophagy. Ard1 and Nat1 mutants exhibited defects in induction of Atg32, a protein essential for mitophagy, and formation of mitochondria-specific autophagosomes. Notably, overexpression of Atg32 partially recovered mitophagy in NatA-null cells, implying that this acetyltransferase participates in mitophagy at least in part via Atg32 induction. Together, our data implicate NatA-mediated protein modification as an early regulatory step crucial for efficient mitophagy.  相似文献   

20.
Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1‐Parkin dependent or independent. In contrast, downregulation of mitochondrial fission–fusion genes caused age‐dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult‐onset, neuronal downregulation of the fission–fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy‐independent mechanisms such as fission–fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号