首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volume-regulated anion channels (VRACs) are key players in regulatory volume decrease of vertebrate cells by mediating the extrusion of chloride and organic osmolytes. They play additional roles in various physiological processes beyond their role in osmotic volume regulation. VRACs are formed by heteromers of LRRC8 proteins; LRRC8A (also called SWELL1) is an essential subunit that combines with any of its paralogs, LRRC8B–E, to form hexameric VRAC complexes. The subunit composition of VRACs determines electrophysiological characteristics of their anion transport such as single-channel conductance, outward rectification, and depolarization-dependent inactivation kinetics. In addition, differently composed VRACs conduct diverse substrates, such as LRRC8D enhancing VRAC permeability to organic substances like taurine or cisplatin. Here, after a recapitulation of the biophysical properties of VRAC-mediated ion and osmolyte transport, we summarize the insights gathered since the molecular identification of VRACs. We describe the recently solved structures of LRRC8 complexes and discuss them in terms of their structure-function relationships. These studies open up many potential avenues for future research.  相似文献   

2.
Platinum‐based drugs such as cisplatin and carboplatin are on the WHO model list of essential medicines, as highly effective chemotherapeutic drugs for the treatment of various solid tumors. These drugs react with purine residues in DNA, thereby causing DNA damage, inhibition of cell division, and eventually cell death. However, the mechanisms whereby platinum‐based drugs enter cancer cells remained poorly understood. In this issue, Planells‐Cases et al ( 2015 ) provide evidence that cells take up cisplatin and carboplatin via volume‐regulated anion channels (VRACs), more specifically VRACs composed of LRRC8A and LRRC8D subunits.  相似文献   

3.
LRRC8 proteins have been shown to underlie the ubiquitous volume regulated anion channel (VRAC). VRAC channels are composed of the LRRC8A subunit and at least one among the LRRC8B-E subunits. In addition to their role in volume regulation, LRRC8 proteins have been implicated in the uptake of chemotherapeutic agents. We had found that LRRC8 channels can be conveniently expressed in Xenopus oocytes, a system without endogenous VRAC activity. The fusion with fluorescent proteins yielded constitutive activity for A/C, A/D and A/E heteromers. Here we tested the effect of the anticancer drug cisplatin on LRRC8A-VFP/8E-mCherry and LRRC8A-VFP/8D-mCherry co-expressing oocytes. Incubation with cisplatin dramatically activated currents for both subunit combinations, confirming that VRAC channels provide an uptake pathway for cisplatin and that intracellular cisplatin accumulation strongly activates the channels. Thus, specific activators of LRRC8 proteins might be useful tools to counteract chemotherapeutic drug resistance.  相似文献   

4.
This study investigates the mechanism of action behind the long‐term responses (12–16 months) of two BRAF WT melanoma patients to the AKT inhibitor MK‐2206 in combination with paclitaxel and carboplatin. Although single agent MK‐2206 inhibited phospho‐AKT signaling, it did not impact in vitro melanoma growth or survival. The combination of MK‐2206 with paclitaxel and carboplatin was cytotoxic in long‐term colony formation and 3D spheroid assays, and induced autophagy. Autophagy was initially protective with autophagy inhibitors and deletion of ATG5 found to enhance cytotoxicity. Although prolonged autophagy induction (>6 days) led to caspase‐dependent apoptosis, drug resistant clones still emerged. Autophagy inhibition enhanced the cell death response through reactive oxygen species and could be reversed by anti‐oxidants. We demonstrate for the first time that AKT inhibition in combination with chemotherapy may have clinical activity in BRAF WT melanoma and show that an autophagy inhibitor may prevent resistance to these drugs.  相似文献   

5.
ObjectivesRecent studies revealed LRRC8A to be an essential component of volume‐regulated anion channel (VRAC), which regulates cellular volume homeostasis. However, evidence for the contribution of LRRC8A‐dependent VRAC activity in vascular smooth muscle cells (VSMCs) is still lacking, and the relevant functional role of LRRC8A in VSMCs remains unknown. The primary goal of this study was to elucidate the role of LRRC8A in VRAC activity in VSMCs and the functional role of LRRC8A in cerebrovascular remodeling during hypertension.Materials and MethodssiRNA‐mediated knockdown and adenovirus‐mediated overexpression of LRRC8A were used to elucidate the electrophysiological properties of LRRC8A in basilar smooth muscle cells (BASMCs). A smooth muscle–specific overexpressing transgenic mouse model was used to investigate the functional role of LRRC8A in cerebrovascular remodeling.ResultsLRRC8A is essential for volume‐regulated chloride current (I Cl, Vol) in BASMCs. Overexpression of LRRC8A induced a voltage‐dependent Cl current independently of hypotonic stimulation. LRRC8A regulated BASMCs proliferation through activation of WNK1/PI3K‐p85/AKT axis. Smooth muscle‐specific upregulation of LRRC8A aggravated Angiotensin II‐induced cerebrovascular remodeling in mice.ConclusionsLRRC8A is an essential component of VRAC and is required for cell volume homeostasis during osmotic challenge in BASMCs. Smooth muscle specific overexpression of LRRC8A increases BASMCs proliferation and substantially aggravates basilar artery remodeling, revealing a potential therapeutic target for vascular remodeling in hypertension.

The schematic diagram for LRRC8A role in cerebrovascular remodeling. LRRC8A is an essential component of VRAC in BASMCs. During the challenge of hypertension, the activated LRRC8A channel‐mediated‐Cl efflux increases WNK1 phosphorylation, which in turn triggers AKT phosphorylation and promotes BASMCs proliferation, eventually exacerbates hypertension‐induced cerebrovascular vascular remodeling.  相似文献   

6.
Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g., secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular functions as well as their role in cancer and drug resistance.  相似文献   

7.
The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.  相似文献   

8.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

9.
10.
11.
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β‐catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage‐stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA‐injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8‐KDEL) could dorsalize Xenopus embryos. Finally, Wnt8‐induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.  相似文献   

12.
Epidermal fatty acid‐binding protein (E‐FABP/FABP5/DA11) binds and transport long‐chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E‐FABP protects nerve growth factor‐differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM‐induced lipotoxicity (PAM‐LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E‐FABP. Antioxidants MCI‐186 and N‐acetyl cysteine prevented E‐FABP's induction in expression by PAM‐LTx, while tert‐butyl hydroperoxide increased ROS and E‐FABP expression. Non‐metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E‐FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE‐FABP showed reduced E‐FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E‐FABP cellular levels by pre‐loading the cells with recombinant E‐FABP diminished the PAM‐induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E‐FABP expression and enhanced the resistance of NGFDPC12 cells to PAM‐LTx. We conclude that E‐FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS.

  相似文献   


13.
14.
Substance P (SP) and its receptor, the neurokinin‐1 receptor (NK‐1 R), are expressed by human tenocytes, and they are both up‐regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti‐apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti‐Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti‐Fas‐induced apoptosis, and by which mechanisms SP mediates an anti‐apoptotic response. Anti‐Fas treatment resulted in a time‐ and dose‐dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose‐dependently reduced the Anti‐Fas‐induced cell death through a NK‐1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti‐Fas‐induced apoptosis via NK‐1 R. In addition, it was shown that SP reduces Anti‐Fas‐induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti‐Fas induces cleavage/activation of caspase‐3 and cleavage of PARP; both of which were inhibited by SP via NK‐1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti‐apoptotic effect of SP was, at least partly, induced through the Akt‐dependent pathway. In conclusion, we show that SP reduces Anti‐Fas‐induced apoptosis in human tenocytes and that this anti‐apoptotic effect of SP is mediated through NK‐1 R and Akt‐specific pathways.  相似文献   

15.
PNO1 (partner of Nob1) was known as a RNA‐binding protein in humans, and its ortholog PNO1 was reported to participate ribosome and proteasome biogenesis in yeasts. Yet there have been few studies about its functions in mammalian cells, and so far its role in human cells has never been reported, especially in urinary bladder cancer (UBC).We interrogated the cellular functions and clinical significance of PNO1 in, and its molecular mechanism through microarrays and bioinformatics analysis. Our findings support that PNO1 participates in promoting proliferation and colonogenesis, while reducing apoptosis of UBC cells, and is also predicted to be associated with the migration and metastasis of UBC PNO1 knockdown (KD) attenuated the tumorigenesis ability of UBC in mouse. PNO1 KD led to the altered expression of 1543 genes that are involved in a number of signalling pathways, biological functions and regulation networks. CD44, PTGS2, cyclin D1, CDK1, IL‐8, FRA1, as well as mTOR, p70 S6 kinase, p38 and Caspase‐3 proteins were all down‐regulated in PNO1 KD cells, suggesting the involvement of PNO1 in inflammatory responses, cell cycle regulation, chemotaxis, cell growth and proliferation, apoptosis, cell migration and invasiveness. This study will enhance our understanding of the molecular mechanism of UBC and may eventually provide novel targets for individualized cancer therapy.  相似文献   

16.
The MEK inhibitor MEK162 is the first targeted therapy agent with clinical activity in patients whose melanomas harbor NRAS mutations; however, median PFS is 3.7 months, suggesting the rapid onset of resistance in the majority of patients. Here, we show that treatment of NRAS‐mutant melanoma cell lines with the MEK inhibitors AZD6244 or trametinib resulted in a rebound activation of phospho‐ERK (pERK). Functionally, the recovery of signaling was associated with the maintenance of cyclin‐D1 expression and therapeutic escape. The combination of a MEK inhibitor with an ERK inhibitor suppressed the recovery of cyclin‐D1 expression and was associated with a significant enhancement of apoptosis and the abrogation of clonal outgrowth. The MEK/ERK combination strategy induced greater levels of apoptosis compared with dual MEK/CDK4 or MEK/PI3K inhibition across a panel of cell lines. These data provide the rationale for further investigation of vertically co‐targeting the MAPK pathway as a potential treatment option for NRAS‐mutant melanoma patients.  相似文献   

17.
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR ) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway.  相似文献   

18.
ABSTRACT

Under acute hypoxia, multiple ion channels on the cell membrane are activated, causing cell swelling and eventually necrosis. LRRC8A is an indispensable protein of the volume-regulated anion channel (VRAC), which participates in swelling and the acceleration of cell necrosis. In this study, we revealed a dynamic change in the expression level of the LRRC8 family during hypoxia in 3T3-L1 cells. The disruption of LRRC8A in 3T3-L1 cells was also associated with a significant anti-necrotic phenotype upon hypoxia accompanied by the reduced expression of necrosis-related genes. In vivo, differential expression of LRRC8 family members was also identified between high-altitude pigs and their low-altitude relatives. Taken these findings together, this study demonstrates the involvement of LRRC8A in hypoxia-induced cell necrosis.  相似文献   

19.
Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca2+ deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up‐regulated cell wall hydrolases and down‐regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down‐regulated under Ca2+‐deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8′‐hydroxylases, key enzymes for ABA catabolism, were up‐regulated by 21‐fold under Ca2+‐deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over‐expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca2+ deficiency‐induced embryo abortion via ABA‐mediated apoptosis. The results elucidated the mechanism of low Ca2+‐induced embryo abortion and described the method for other fields of study.  相似文献   

20.
Exposure of plants to UV‐C irradiation induces gene expression and cellular responses that are commonly associated with wounding and pathogen defence, and in some cases can lead to increased resistance against pathogen infection. We examined, at a physiological, molecular and biochemical level, the effects of and responses to, sub‐lethal UV‐C exposure on Arabidopsis plants when irradiated with increasing dosages of UV‐C radiation. Following UV‐C exposure plants had reduced leaf areas over time, with the severity of reduction increasing with dosage. Severe morphological changes that included leaf glazing, bronzing and curling were found to occur in plants treated with the 1000 J·m?2 dosage. Extensive damage to the mesophyll was observed, and cell death occurred in both a dosage‐ and time‐dependent manner. Analysis of H2O2 activity and the pathogen defence marker genes PR1 and PDF1.2 demonstrated induction of these defence‐related responses at each UV‐C dosage tested. Interestingly, in response to UV‐C irradiation the production of callose (β‐1,3‐glucan) was identified at all dosages examined. Together, these results show plant responses to UV‐C irradiation at much lower doses than have previously been reported, and that there is potential for the use of UV‐C as an inducer of plant defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号