首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
4.
5.
Inactivation of survival pathways such as NF‐κB, cyclooxygenase (COX‐2), or epidermal growth factor receptor (EGFR) signaling individually may not be sufficient for the treatment of advanced pancreatic cancer (PC) as suggested by recent clinical trials. 3,3′‐Diindolylmethane (B‐DIM) is an inhibitor of NF‐κB and COX‐2 and is a well‐known chemopreventive agent. We hypothesized that the inhibition of NF‐κB and COX‐2 by B‐DIM concurrently with the inhibition of EGFR by erlotinib will potentiate the anti‐tumor effects of cytotoxic drug gemcitabine, which has been tested both in vitro and in vivo. Inhibition of viable cells in seven PC cell lines treated with B‐DIM, erlotinib, or gemcitabine alone or their combinations was evaluated using 3‐(4,5‐dimetylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Significant inhibition in cell viability was observed in PC cells expressing high levels of COX‐2, EGFR, and NF‐κB proteins. The observed inhibition was associated with an increase in apoptosis as assessed by ELISA. A significant down‐regulation in the expression of COX‐2, NF‐κB, and EGFR in BxPC‐3, COLO‐357, and HPAC cells was observed, suggesting that simultaneous targeting of EGFR, NF‐κB, and COX‐2 is more effective than targeting either signaling pathway separately. Our in vitro results were further supported by in vivo studies showing that B‐DIM in combination with erlotinib and gemcitabine was significantly more effective than individual agents. Based on our preclinical in vitro and in vivo results, we conclude that this multi‐targeted combination could be developed for the treatment of PC patients whose tumors express high levels of COX‐2, EGFR, and NF‐κB. J. Cell. Biochem. 110: 171–181, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

8.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Estrogen receptor (ER)‐positive breast cancer cells have low levels of constitutive NF‐κB activity while ER negative (?) cells and hormone‐independent cells have relatively high constitutive levels of NF‐κB activity. In this study, we have examined the aspects of mutual repression between the ERα and NF‐κB proteins in ER+ and ER? hormone‐independent cells. Ectopic expression of the ERα reduced cell numbers in ER+ and ER? breast cancer cell lines while NF‐κB‐binding activity and the expression of several NF‐κB‐regulated proteins were reduced in ER? cells. ER overexpression in ER+/E2‐independent LCC1 cells only weakly inhibited the predominant p50 NF‐κB. GST‐ERα fusion protein pull downs and in vivo co‐immunoprecipitations of NF‐κB:ERα complexes showed that the ERα interacts with p50 and p65 in vitro and in vivo. Inhibition of NF‐κB increased the expression of diverse E2‐regulated proteins. p50 differentially associated directly with the ER:ERE complex in LCC1 and MCF‐7 cells by supershift analysis while p65 antibody reduced ERα:ERE complexes in the absence of a supershift. ChIP analysis demonstrated that NF‐κB proteins are present on an endogenous ERE. Together these results demonstrate that the ER and NF‐κB undergo mutual repression, which may explain, in part, why expression of the ERα in ER? cells does not confer growth signaling. Secondly, the acquisition of E2‐independence in ER+ cells is associated with predominantly p50:p50 NF‐κB, which may reflect alterations in the ER in these cells. Since the p50 homodimer is less sensitive to the presence of the ER, this may allow for the activation of both pathways in the same cell. J. Cell. Biochem. 107: 448–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

11.
The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF‐κB pathway, which is important for B‐cell development and function. Here, we describe a mouse model (B‐HOIPΔlinear) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF‐κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B‐HOIPΔlinear mice due to defective activation of the IKK complex; however, B‐cell receptor (BCR)‐mediated activation of the NF‐κB and ERK pathways was unaffected. B‐HOIPΔlinear mice show impaired B1‐cell development and defective antibody responses to thymus‐dependent and thymus‐independent II antigens. Taken together, these data suggest that LUBAC‐mediated linear polyubiquitination is essential for B‐cell development and activation, possibly via canonical NF‐κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.  相似文献   

12.
Aberrant substance P/neurokinin‐1 receptor (SP/NK‐1R) system activation plays a critical role in various disorders, however, little is known about the expression and the detailed molecular mechanism of the SP and NK‐1R in gallbladder cancer (GBC). In this study, we firstly analyzed the expression and clinical significance of them in patients with GBC. Then, cellular assays were performed to clarify their biological role in GBC cells. Moreover, we investigated the molecular mechanisms regulated by SP/NK‐1R. Meanwhile, mice xenografted with human GBC cells were analyzed regarding the effects of SP/NK1R complex in vivo. Finally, patient samples were utilized to investigate the effect of SP/NK‐1R. The results showed that SP and NK‐1R were highly expressed in GBC. We found that SP strongly induced GBC cell proliferation, clone formation, migration and invasion, whereas antagonizing NK‐1R resulted in the opposite effects. Moreover, SP significantly enhanced the expression of NF‐κB p65 and the tumor‐associated cytokines, while, Akt inhibitor could reverse these effects. Further studies indicated that decreasing activation of NF‐κB or Akt diminished GBC cell proliferation and migration. In consistent with results, immunohistochemical staining showed high levels of Akt, NF‐κB and cytokines in tumor tissues. Most importantly, the similar conclusion was obtained in xenograft mouse model. Our findings demonstrate that NK‐1R, after binding with the endogenous agonist SP, could induce GBC cell migration and spreading via modulation of Akt/NF‐κB pathway.  相似文献   

13.
14.
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF‐κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF‐κB activation in GBM; however, the correlation between EGFR and the NF‐κB pathway remains unclear. In this study, we investigated the role of mucosa‐associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti‐tumour activity and effectiveness of MI‐2, a MALT1 inhibitor in a pre‐clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR‐induced NF‐kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle–associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF‐κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR‐induced NF‐kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.  相似文献   

15.
Notch signaling is involved in a variety of cellular processes, such as cell fate specification, differentiation, proliferation, and survival. Notch‐1 over‐expression has been reported in prostate cancer metastases. Likewise, Notch ligand Jagged‐1 was found to be over‐expressed in metastatic prostate cancer compared to localized prostate cancer or benign prostatic tissues, suggesting the biological significance of Notch signaling in prostate cancer progression. However, the mechanistic role of Notch signaling and the consequence of its down‐regulation in prostate cancer have not been fully elucidated. Using multiple cellular and molecular approaches such as MTT assay, apoptosis assay, gene transfection, real‐time RT‐PCR, Western blotting, migration, invasion assay and ELISA, we found that down‐regulation of Notch‐1 or Jagged‐1 was mechanistically associated with inhibition of cell growth, migration, invasion and induction of apoptosis in prostate cancer cells, which was mediated via inactivation of Akt, mTOR, and NF‐κB signaling. Consistent with these results, we found that the down‐regulation of Notch‐1 or Jagged‐1 led to decreased expression and the activity of NF‐κB downstream genes such as MMP‐9, VEGF, and uPA, contributing to the inhibition of cell migration and invasion. Taken together, we conclude that the down‐regulation of Notch‐1 or Jagged‐1 mediated inhibition of cell growth, migration and invasion, and the induction of apoptosis was in part due to inactivation of Akt, mTOR, and NF‐κB signaling pathways. Our results further suggest that inactivation of Notch signaling pathways by innovative strategies could be a potential targeted approach for the treatment of metastatic prostate cancer. J. Cell. Biochem. 109: 726–736, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
19.
20.
This work was undertaken to explore the effects of platycodin D, a triterpenoid saponin from Platycodon grandiflorum, on the growth and invasiveness of human oral squamous cell carcinoma (OSCC). Platycodin D caused a significant, concentration‐dependent inhibition of cell viability and induced significant apoptosis in OSCC cells. Moreover, platycodin D significantly inhibited OSCC cell invasion. At the molecular level, platycodin D increased the amounts of IκBα protein and reduced the expression of phosphorylated NF‐κB p65, MMP‐2, and MMP‐9. Ectopic expression of constitutively active NF‐κB p65 prevented platycodin D‐mediated induction of apoptosis and suppression of invasion in OSCC cells. In vivo studies confirmed that platycodin D retarded the growth of subcutaneous SCC‐4 xenograft tumors and reduced phosphorylation of NF‐κB p65. Altogether, platycodin D shows inhibitory activity on OSCC growth and invasion through inactivation of the NF‐κB pathway and might provide therapeutic benefits in the treatment of OSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号