首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
6.
Plasmodiophora brassicae is a soil‐borne biotroph whose life cycle involves reprogramming host developmental processes leading to the formation of galls on its underground parts. Formation of such structures involves modification of the host cell cycle leading initially to hyperplasia, increasing the number of cells to be invaded, followed by overgrowth of cells colonised by the pathogen. Here we show that P. brassicae infection stimulates formation of the E2Fa/RBR1 complex and upregulation of MYB3R1, MYB3R4 and A‐ and B‐type cyclin expression. These factors were previously described as important regulators of the G2?M cell cycle checkpoint. As a consequence of this manipulation, a large population of host hypocotyl cells are delayed in cell cycle exit and maintained in the proliferative state. We also report that, during further maturation of galls, enlargement of host cells invaded by the pathogen involves endoreduplication leading to increased ploidy levels. This study characterises two aspects of the cell cycle reprogramming efforts of P. brassicae: systemic, related to the disturbance of host hypocotyl developmental programs by preventing cell cycle exit; and local, related to the stimulation of cell enlargement via increased endocycle activity.  相似文献   

7.
8.
9.
10.
The effects of 0.5% and 0.025% solutions of colchicine on the passage of cells through the mitotic cycle in apical meristems of primary roots of Vicia faba have been examined. Both treatments affected cell progression through the mitotic cycle in the same way: S and G1 were shorter, and G2 and mitosis longer, than the corresponding control values. The duration of the various phases of the mitotic cycle were similar to those reported previously for apical meristems of lateral roots though cycle time itself was longer. Recovery of root proliferating tissues from colchicine-induced inhibition of growth is correlated with the presence of quiescent cells. Meristems which have no quiescent cells do not recover from eolchicine treatment, while meristems which contain many quiescent cells recover faster than those which contain few. The growth fraction and the proportion of proliferating cells with a short cycle time are linearly related to the duration of the S period in root meristems.  相似文献   

11.
12.
The mammalian DP, RB-like, E2F, and MuvB-like proteins (DREAM) complex, whose key components include p130 and E2F4, plays a fundamental role in repression of cell cycle-specific genes during growth arrest. Mammalian DREAM is well conserved with Drosophila and Caenorhabditis elegans complexes that repress pivotal developmental genes, but the mammalian complex has been thought to exist only in quiescent cells and not to be linked with development. However, new findings here identify tissue-specific promoters repressed by DREAM in proliferating precursors, revealing a new connection between control of growth arrest and terminal differentiation. Mechanistically, tissue-specific promoter occupation by DREAM is dependent on the integrity of a repressor form of the SWI/SNF chromatin-remodeling complex.  相似文献   

13.
14.
 In Drosophila, the sensory mother cells of macrochaetes are chosen from among the mitotically quiescent clusters of cells in wing imaginal discs, where other cells are proliferating. The pattern of cyclin A, one of the G2 cyclins, reveals that mitotically quiescent clusters of cells are arrested in G2. When precocious mitoses are induced during sensory mother cell determination by the ectopic expression of string, a known G2/M transition regulator, the formation of sensory mother cells is disturbed, resulting in the loss of macrochaetes in the adult notum. This suggests that G2 arrest of the cell cycle ensures the proper determination of sensory mother cells. Received: 16 December 1996 / Accepted: 14 March 1997  相似文献   

15.
16.
17.
Post-embryonic growth in plants depends on the continuous supply of undifferentiated cells within meristems. Proliferating cells maintain their competence for division by active repression of differentiation and the associated endocycle entry. We show by upregulation and downregulation of E2FA that it is required for maintaining proliferation, as well as for endocycle entry. While E2FB-RBR1 (retinoblastoma-related protein 1) complexes are reduced after sucrose addition or at elevated CYCD3;1 levels, E2FA maintains a stable complex with RBR1 in proliferating cells. Chromatin immunoprecipitation shows that RBR1 binds in the proximity of E2F promoter elements in CCS52A1 and CSS52A2 genes, central regulators for the switch from proliferation to endocycles. Overexpression of a truncated E2FA mutant (E2FA(ΔRB)) lacking the RBR1-binding domain interferes with RBR1 recruitment to promoters through E2FA, leading to decreased meristem size in roots, premature cell expansion and hyperactivated endocycle in leaves. E2F target genes, including CCS52A1 and CCS52A2, are upregulated in E2FA(ΔRB) and e2fa knockout lines. These data suggest that E2FA in complex with RBR1 forms a repressor complex in proliferating cells to inhibit premature differentiation and endocycle entry. Thus, E2FA regulates organ growth via two distinct, sequentially operating pathways.  相似文献   

18.
19.
Exposure of cells to genotoxic agents results in activation of checkpoint pathways leading to cell cycle arrest. These arrest pathways allow repair of damaged DNA before its replication and segregation, thus preventing accumulation of mutations. The tumor suppressor retinoblastoma (RB) is required for the G(1)/S checkpoint function. In addition, regulation of the G(2) checkpoint by the tumor suppressor p53 is RB-dependent. However, the molecular mechanism underlying the involvement of RB and its related proteins p107 and p130 in the G(2) checkpoint is not fully understood. We show here that sustained G(2)/M arrest induced by the genotoxic agent doxorubicin is E2F-dependent and involves a decrease in expression of two mitotic regulators, Stathmin and AIM-1. Abrogation of E2F function by dominant negative E2F abolishes the doxorubicin-induced down-regulation of Stathmin and AIM-1 and leads to premature exit from G(2). Expression of the E7 papilloma virus protein, which dissociates complexes containing E2F and RB family members, also prevents the down-regulation of these mitotic genes and leads to premature exit from G(2) after genotoxic stress. Furthermore, genotoxic stress increases the levels of nuclear E2F-4 and p130 as well as their in vivo binding to the Stathmin promoter. Thus, functional complexes containing E2F and RB family members appear to be essential for repressing expression of critical mitotic regulators and maintaining the G(2)/M checkpoint.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号