首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
汪晓雯  国立耘 《生物工程学报》2016,32(11):1564-1575
在真核生物中,DNA缠绕在组蛋白上形成核小体,一个组蛋白分子包括H2A、H2B、H3和H4各2个核心组蛋白亚基。在这4种核心组蛋白中,H2A富含多样化,且在细胞的生物途径中起重要作用的变异体,因此,H2A家族一直是研究热点。致病疫霉是重要的病原菌也是研究卵菌的模式物种之一,目前关于卵菌表观遗传的研究还未见报道。本研究针对致病疫霉组蛋白H2A变异体,利用基因组信息和基因芯片数据,通过序列比对、系统发育分析以及基因表达水平检测,发现在致病疫霉基因组中存在组蛋白H2A变异体H2A.X.1、H2A.X.2和H2A.Z,它们在不同生长发育阶段和侵染过程呈现特异的表达谱。研究结果为进一步研究致病疫霉表观遗传机制奠定了基础。  相似文献   

3.
4.
Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA‐based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z‐nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate‐specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z‐specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome‐wide mapping reveals that PWWP2A binds selectively to H2A.Z‐containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C‐terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z‐specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.  相似文献   

5.
The GT‐1 cis‐element widely exists in many plant gene promoters. However, the molecular mechanism that underlies the response of the GT‐1 cis‐element to abiotic and biotic stresses remains elusive in rice. We previously isolated a rice short‐chain peptide‐encoding gene, Os2H16, and demonstrated that it plays important roles in both disease resistance and drought tolerance. Here, we conducted a promoter assay of Os2H16 and identified GT‐1 as an important cis‐element that mediates Os2H16 expression in response to pathogen attack and osmotic stress. Using the repeated GT‐1 as bait, we characterized an abscisic acid, stress and ripening 2 (ASR2) protein from yeast‐one hybridization screening. Sequence alignments showed that the carboxy‐terminal domain of OsASR2 containing residues 80–138 was the DNA‐binding domain. Furthermore, we identified that OsASR2 was specifically bound to GT‐1 and activated the expression of the target gene Os2H16, as well as GFP driven by the chimeric promoter of 2 × GT‐1‐35S mini construct. Additionally, the expression of OsASR2 was elevated by pathogens and osmotic stress challenges. Overexpression of OsASR2 enhanced the resistance against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani, and tolerance to drought in rice. These results suggest that the interaction between OsASR2 and GT‐1 plays an important role in the crosstalk of the response of rice to biotic and abiotic stresses.  相似文献   

6.
7.
Histone variants are important components of eukaryotic chromatin and can alter chromatin structure to confer specialized functions. H2B variant histones are rare in nature but have evolved independently in the phyla Apicomplexa and Trypanasomatida. Here, we investigate the apicomplexan‐specific Plasmodium falciparum histone variant Pf H2B.Z and show that within nucleosomes Pf H2B.Z dimerizes with the H2A variant Pf H2A.Z and that Pf H2B.Z and Pf H2A.Z occupancy correlates in the subset of genes examined. These double‐variant nucleosomes also carry common markers of euchromatin like H3K4me3 and histone acetylation. Pf H2B.Z levels are elevated in intergenic regions across the genome, except in the var multigene family, where Pf H2A.Z/Pf H2B.Z double‐variant nucleosomes are only enriched in the promoter of the single active var copy and this enrichment is developmentally regulated. Importantly, this pattern seems to be specific for var genes and does not apply to other heterochromatic gene families involved in red blood cell invasion which are also subject to clonal expression. Thus, Pf H2A.Z/Pf H2B.Z double‐variant nucleosomes appear to have a highly specific function in the regulation of P. falciparum virulence.  相似文献   

8.
9.
Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4‐K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4‐K16 and is also involved in the acetylation of histone H3‐K56 and the phosphorylation of histone H2A‐S129 and cyclin‐dependent kinase 1 CDK1‐Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site‐specific modifications are evidenced with hyperacetylated H4‐K16, hypoacetylated H3‐K56, and both hypophosphorylated H2A‐S129 and CDK1‐Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA‐damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1/S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4‐K16 and to indirectly modify H3‐K56, H2A‐S129, and CDK1‐Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi.  相似文献   

10.
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC‐related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor‐β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.  相似文献   

11.
Histone demethylation regulates chromatin structure and gene expression, and is catalyzed by various histone demethylases. Trimethylation of histone H3 at lysine 4 (H3K4) is coupled to active gene expression; trimethyl H3K4 is demethylated by Jumonj C (JmjC) domain‐containing demethylases in mammals. Here we report that a plant‐specific JmjC domain‐containing protein known as PKDM7B (At4g20400) demethylates trimethyl H3K4. PKDM7B mediates H3K4 demethylation in a key floral promoter, FLOWERING LOCUS T (FT), and an FT homolog, TWIN SISTER OF FT (TSF), and represses their expression to inhibit the floral transition in Arabidopsis. Our findings suggest that there are at least two distinct sub‐families of JmjC domain‐containing demethylases that demethylate the active trimethyl H3K4 mark in eukaryotic genes, and reveal a plant‐specific JmjC domain enzyme capable of H3K4 demethylation.  相似文献   

12.
13.
14.
15.
16.
Histones are vital structural proteins of chromatin that influence its dynamics and function. The tissue-specific expression of histone variants has been shown to regulate the expression of specific genes and genomic stability in animal systems. Here we report on the characterization of five histone H3 variants expressed in Lilium generative cell. The gcH3 and leH3 variants show unique sequence diversity by lacking a conserved lysine residue at position 9 (H3K9). The gH3 shares conserved structural features with centromeric H3 of Arabidopsis. The gH3 variant gene is strongly expressed in generative cells and gH3 histone is incorporated in to generative cell chromatin. The lysine residue of H3 at position 4 (H3K4) is highly methylated in the nuclei of generative cells of mature pollen, while methylation of H3K4 is low in vegetative cell nuclei. Taken together, these results suggest that male gametic cells of Lilium have unique chromatin state and histone H3 variants and their methylation might be involved in gene regulation of male gametic cells.Accession numbers for the sequence data The sequences reported in this paper have been deposited in the DDBJ database gcH3 GC1174 (accession no. AB195644), gH3 GC1008 (accession no. AB195646), leH3 GC1126 (accession no. AB195648), soH3-1 GC0075 (accession no. AB195650), soH3-2 GC1661 (accession no. AB195652), genomic sequence of gcH3 (accession no. AB195645), genomic sequence of gH3 (accession no. AB195647), genomic sequence of leH3 (accession no. AB195649), genomic sequence of soH3-2 (accession no. AB195651), genomic sequence of soH3-2 (accession no. AB195653).  相似文献   

17.
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide), which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid (SA), and enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene and JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号