首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Membrane water transport is an essential event not only in the osmotic cell volume change but also in the subsequent cell volume regulation. Here we investigated the route of water transport involved in the regulatory volume decrease (RVD) that occurs after osmotic swelling in human epithelial Intestine 407 cells. The diffusion water permeability coefficient (Pd) measured by NMR under isotonic conditions was much smaller than the osmotic water permeability coefficient (Pf) measured under an osmotic gradient. Temperature dependence of Pf showed the Arrhenius activation energy (Ea) of a low value (1.6 kcal/mol). These results indicate an involvement of a facilitated diffusion mechanism in osmotic water transport. A mercurial water channel blocker (HgCl2) diminished the Pf value. A non-mercurial sulfhydryl reagent (MMTS) was also effective. These blockers of water channels suppressed the RVD. RT-PCR and immunocytochemistry demonstrated predominant expression of AQP3 water channel in this cell line. Downregulation of AQP3 expression induced by treatment with antisense oligodeoxynucleotides was found to suppress the RVD response. Thus, it is concluded that AQP3 water channels serve as an essential pathway for volume-regulatory water transport in, human epithelial cells.  相似文献   

2.
During embryo development in many metazoan animals, the first differentiated cell type to form is an epithelial cell. This epithelial layer is modified by developmental cues of body axes formation to give rise to various tissues. The cells that arise are mesenchymal in nature and are a source of other tissue types. This epithelial to mesenchymal transition is used for tissue type formation and also seen in diseases such as cancer. Here we discuss recent findings on the cellular architecture formation in the Drosophila embryo and how it affects the developmental program of body axes formation. In particular these studies suggest the presence of compartments around each nucleus in a common syncytium. Despite the absence of plasma membrane boundaries, each nucleus not only has its own endoplasmic reticulum and Golgi complex but also its own compartmentalized plasma membrane domain above it. This architecture is potentially essential for morphogen gradient restriction in the syncytial Drosophila embryo. We discuss various properties of the dorso-ventral and the antero-posterior morphogen gradients in the Drosophila syncytium, which are likely to depend on the syncytial architecture of the embryo.  相似文献   

3.
Dorsal closure (DC), the closure of a hole in the dorsal epidermis of Drosophila embryos by the joining of opposing epithelial cell sheets, has been used as a model process to study the molecular and cellular mechanisms underlying epithelial spreading and wound healing. Recent studies have provided novel insights into how different tissues function cooperatively in this process. Specifically, they demonstrate a critical function of the epidermis surrounding the hole in modulating the behavior of the amnioserosa cells inside. These findings shed light not only on the mechanisms by which the behavior of different tissues is coordinated during DC, but also on the general mechanisms by which tissues interact to trigger global morphogenesis, an essential but yet poorly explored aspect of embryogenesis.  相似文献   

4.
Lung stem cells   总被引:2,自引:0,他引:2  
The lung is a relatively quiescent tissue comprised of infrequently proliferating epithelial, endothelial, and interstitial cell populations. No classical stem cell hierarchy has yet been described for the maintenance of this essential tissue; however, after injury, a number of lung cell types are able to proliferate and reconstitute the lung epithelium. Differentiated mature epithelial cells and newly recognized local epithelial progenitors residing in specialized niches may participate in this repair process. This review summarizes recent discoveries and controversies, in the field of stem cell biology, that are not only challenging, but also advancing an understanding of lung injury and repair. Evidence supporting a role for the numerous cell types believed to contribute to lung epithelial homeostasis is reviewed, and initial studies employing cell-based therapies for lung disease are presented. As a detailed understanding of stem cell biology, lung development, lineage commitment, and epithelial differentiation emerges, an ability to modulate lung injury and repair is likely to follow.  相似文献   

5.
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP‐mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL‐37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL‐37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion‐induced LL‐37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol‐rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion‐induced resistance. Our data highlight the importance of Rho GTPase‐dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL‐37.  相似文献   

6.
The neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e. loss of epithelial junctions and acquisition of pro-migratory properties, invades the entire embryo and differentiates into a wide diversity of terminal tissues. We have studied the implication of Rho pathways in NC development and previously showed that RhoV is required for cranial neural crest (CNC) cell specification. We show here that the non-canonical Wnt response rhoU/wrch1 gene, closely related to rhoV, is also expressed in CNC cells but at later stages. Using both gain- and loss-of-function experiments, we demonstrate that the level of RhoU expression is critical for CNC cell migration and subsequent differentiation into craniofacial cartilages. In in vitro cultures, RhoU activates pathways that cooperate with PAK1 and Rac1 in epithelial adhesion, cell spreading and directional cell migration. These data support the conclusion that RhoU is an essential regulator of CNC cell migration.  相似文献   

7.
The human pathogenic fungus Candida albicans can cause systemic infections by invading epithelial barriers to gain access to the bloodstream. One of the main reservoirs of C. albicans is the gastrointestinal tract and systemic infections predominantly originate from this niche. In this study, we used scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes. Our data demonstrate that adhesion, invasion and damage by C. albicans depend not only on fungal morphology and activity, but also on the epithelial cell type and the differentiation stage of the epithelial cells, indicating that epithelial cells differ in their susceptibility to the fungus. C. albicans can invade epithelial cells by induced endocytosis and/or active penetration. However, depending on the host cell faced by the fungus, these routes are exploited to a different extent. While invasion into oral cells occurs via both routes, invasion into intestinal cells occurs only via active penetration.  相似文献   

8.
SPAG6, an axoneme central apparatus protein, is essential for function of ependymal cell cilia and sperm flagella. A significant number of Spag6-deficient mice die with hydrocephalus, and surviving males are sterile because of sperm motility defects. In further exploring the ciliary dysfunction in Spag6-null mice, we discovered that cilia beat frequency was significantly reduced in tracheal epithelial cells, and that the beat was not synchronized. There was also a significant reduction in cilia density in both brain ependymal and trachea epithelial cells, and cilia arrays were disorganized. The orientation of basal feet, which determines the direction of axoneme orientation, was apparently random in Spag6-deficient mice, and there were reduced numbers of basal feet, consistent with reduced cilia density. The polarized epithelial cell morphology and distribution of intracellular mucin, α-tubulin, and the planar cell polarity protein, Vangl2, were lost in Spag6-deficient tracheal epithelial cells. Polarized epithelial cell morphology and polarized distribution of α-tubulin in tracheal epithelial cells was observed in one-week old wild-type mice, but not in the Spag6-deficient mice of the same age. Thus, the cilia and polarity defects appear prior to 7 days post-partum. These findings suggest that SPAG6 not only regulates cilia/flagellar motility, but that in its absence, ciliogenesis, axoneme orientation, and tracheal epithelial cell polarity are altered.  相似文献   

9.
Shigella species are able to grow in a variety of environments, including intracellularly in host epithelial cells. Shigella have a number of different iron transport systems that contribute to their ability to grow in these diverse environments. Siderophore iron uptake systems, heme transporters, and ferric and ferrous iron transport systems are present in these bacteria, and the genes encoding some of these systems appear to have spread among the Shigella species by horizontal transmission. Iron is not only essential for growth of Shigella but also plays an important role in regulation of metabolic processes and virulence determinants in Shigella. This regulation is mediated by the repressor protein Fur and the small RNA RyhB.  相似文献   

10.
In order to investigate the specific factors controlling the growth of normal breast cell types, purified populations of human breast epithelial and myoepithelial cells from reduction mammoplasties were grown in primary culture in three defined media and their response to foetal calf serum (FCS), epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) measured using MTT growth assays. Epithelial and myoepithelial cells differed markedly in their growth requirements. Whereas epithelial cell survival was dependent on the presence of FCS, myoepithelial cell growth was dramatically inhibited by serum. EGF and FGF2 were mitogenic for epithelial cells but not myoepithelial cells, the addition of insulin being the only essential supplement required for myoepithelial cell growth. Heparin inhibited FGF2-stimulated epithelial cell growth but also basal myoepithelial cell proliferation and this inhibition could be overcome by the addition of EGF. Neutralizing antibodies to EGF also inhibited basal myoepithelial cell growth. This suggests the possibility of an autocrine role for a heparin-binding member of the EGF family in the growth of myoepithelial cells. Purified cells combined to form lobuloalveolar structures when incubated in a reconstituted basement membrane matrix (Matrigel) in the presence of EGF and FGF2. J. Cell. Physiol. 171:11–19, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
α-Amylase, which plays an essential role in starch degradation, is expressed mainly in the pancreas and salivary glands. Human α-amylase is also detected in other tissues, but it is unclear whether the α-amylase is endogenously expressed in each tissue or mixed exogenously with one expressed by the pancreas or salivary glands. Furthermore, the biological significance of these α-amylases detected in tissues other than the pancreas and salivary glands has not been elucidated. We discovered that human α-amylase is expressed in intestinal epithelial cells and analyzed the effects of suppressing α-amylase expression. α-Amylase was found to be expressed at the second-highest messenger RNA level in the duodenum in human normal tissues after the pancreas. α-Amylase was detected in the cell extract of Caco-2 intestinal epithelial cells but not secreted into the culture medium. The amount of α-amylase expressed increased depending on the length of the culture of Caco-2 cells, suggesting that α-amylase is expressed in small intestine epithelial cells rather than the colon because the cells differentiate spontaneously upon reaching confluence in culture to exhibit the characteristics of small intestinal epithelial cells rather than colon cells. The α-amylase expressed in Caco-2 cells had enzymatic activity and was identified as AMY2B, one of the two isoforms of pancreatic α-amylase. The suppression of α-amylase expression by small interfering RNA inhibited cell differentiation and proliferation. These results demonstrate for the first time that α-amylase is expressed in human intestinal epithelial cells and affects cell proliferation and differentiation. This α-amylase may induce the proliferation and differentiation of small intestine epithelial cells, supporting a rapid turnover of cells to maintain a healthy intestinal lumen.  相似文献   

12.
In the course of embryogenesis multicellular structures and organs are assembled from constituent cells. One structural component common to many organs is the tube, which consists most simply of a luminal space surrounded by a single layer of epithelial cells. The notochord of ascidian Ciona forms a tube consisting of only 40 cells, and serves as a hydrostatic “skeleton” essential for swimming. While the early processes of convergent extension in ascidian notochord development have been extensively studied, the later phases of development, which include lumen formation, have not been well characterized. Here we used molecular markers and confocal imaging to describe tubulogenesis in the developing Ciona notochord. We found that during tubulogenesis each notochord cell established de novo apical domains, and underwent a mesenchymal–epithelial transition to become an unusual epithelial cell with two opposing apical domains. Concomitantly, extracellular luminal matrix was produced and deposited between notochord cells. Subsequently, each notochord cell simultaneously executed two types of crawling movements bi-directionally along the anterior/posterior axis on the inner surface of notochordal sheath. Lamellipodia-like protrusions resulted in cell lengthening along the anterior/posterior axis, while the retraction of trailing edges of the same cell led to the merging of the two apical domains. As a result, the notochord cells acquired endothelial-like shape and formed the wall of the central lumen. Inhibition of actin polymerization prevented the cell movement and tube formation. Ciona notochord tube formation utilized an assortment of common and fundamental cellular processes including cell shape change, apical membrane biogenesis, cell/cell adhesion remodeling, dynamic cell crawling, and lumen matrix secretion.  相似文献   

13.
BACKGROUND: aPKC and PAR-1 are required for cell polarity in various contexts. In mammalian epithelial cells, aPKC localizes at tight junctions (TJs) and plays an indispensable role in the development of asymmetric intercellular junctions essential for the establishment and maintenance of apicobasal polarity. On the other hand, one of the mammalian PAR-1 kinases, PAR-1b/EMK1/MARK2, localizes to the lateral membrane in a complimentary manner with aPKC, but little is known about its role in apicobasal polarity of epithelial cells as well as its functional relationship with aPKC. RESULTS: We demonstrate that PAR-1b is essential for the asymmetric development of membrane domains of polarized MDCK cells. Nonetheless, it is not required for the junctional localization of aPKC nor the formation of TJs, suggesting that PAR-1b works downstream of aPKC during epithelial cell polarization. On the other hand, aPKC phosphorylates threonine 595 of PAR-1b and enhances its binding with 14-3-3/PAR-5. In polarized MDCK cells, T595 phosphorylation and 14-3-3 binding are observed only in the soluble form of PAR-1b, and okadaic acid treatment induces T595-dependent dissociation of PAR-1b from the lateral membrane. Furthermore, T595A mutation induces not only PAR-1b leakage into the apical membrane, but also abnormal development of membrane domains. These results suggest that in polarized epithelial cells, aPKC phosphorylates PAR-1b at TJs, and in cooperation with 14-3-3, promotes the dissociation of PAR-1b from the lateral membrane to regulate PAR-1b activity for the membrane domain development. CONCLUSIONS: These results suggest that mammalian aPKC functions upstream of PAR-1b in both the establishment and maintenance of epithelial cell polarity.  相似文献   

14.
To determine the mechanism of growth and differentiation of retinal pigment epithelial (RPE) cells it is important to understand the pathogenesis of several retinal diseases. Recently it has been reported that several cytokines and neuropeptides regulate the growth of RPE cells. In this study, the role of cytokines and neuropeptides in melanin synthesis, which is one indication of the RPE cell differentiation, was examined using chick RPE cells in vitro IL-1β, TNF-α, substance P, β-endorphin and methionine-enkephalin stimulated the melanin synthesis of RPE cells in a dose-dependent manner. The most effective concentrations of these agents on RPE cell melanin synthesis were not the same as that for RPE cell proliferation. These results indicate that cytokines and neuropeptides play an important role not only for the growth but also for the differentiation of RPE cells.  相似文献   

15.
The rat cell line 804G assembles an extracellular matrix which induces not only the rapid adhesion and spreading of epithelial cells but also the assembly of a cell–matrix attachment device called the hemidesmosome. The major component of this matrix is laminin-5. We have purified rat laminin-5 from medium conditioned by 804G cells. Epithelial cells which are co-incubated with medium supplemented with soluble laminin-5 adhere and spread rapidly. Furthermore, human carcinoma cells undergo a dramatic morphologic change in the presence of laminin-5 and form orderly arrays resembling epithelial sheets. Soluble rat laminin-5 is selectively incorporated into an insoluble matrix of epithelial cellsin vitro,since rat-specific laminin-5 antibodies stain cell–substrate contacts. Addition of medium containing soluble laminin-5 to explanted, human corneal rims induces assembly of hemidesmosomes, important cell–matrix attachment devices. Furthermore, rat-specific laminin-5 antibodies stain areas of contact between corneal epithelium and basement membrane, indicating that rat laminin-5 from the medium is incorporated into basement membrane. We discuss the use of laminin-5 as a medium supplement for the culture of both epithelial cells and epithelial tissue explants.  相似文献   

16.
17.
Isolation of epithelial cells for cell culture is based on destruction of epithelial integrity. The consequences are manifold: cell polarity and specific cell functions are lost; cells acquire non‐epithelial characteristics and start to proliferate. This situation may also occur in situ when parts of the epithelium are lost, either by apoptosis or necrosis by organ or tissue injury. During recovery from this injury, surviving epithelial cells proliferate and may restore epithelial integrity and finally re‐differentiate into functional epithelial cells. In vitro, this re‐differentiation is mostly not complete due to sub‐optimal culture conditions. Therefore cultured epithelial cells resemble wounded or injured epithelia rather than healthy and well differentiated epithelia. The value of an in vitro cell model is the extent to which it helps to understand the function of the cells in situ. A variety of parameters influence the state of differentiation of cultured cells in vitro. Although each of these parameters had been studied, the picture how they co‐ordinately influence the state of differentiation of epithelial cells in vitro is incomplete. Therefore we discuss the influence of the isolation method and cell culture on epithelial cells, and outline strategies to achieve highly differentiated epithelial cells for the use as an in vitro model.  相似文献   

18.
Li Q  Feng S  Yu L  Zhao G  Li M 《Fly》2011,5(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

19.
《Fly》2013,7(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

20.
Chronic inflammation induced by Helicobacter pylori infection is a critical factor in the development of peptic ulcer disease and gastric cancer. Central to this inflammation is the initiation of pro‐inflammatory signaling cascades within epithelial cells, in particular those mediated by two sensors of bacterial cell wall components, nucleotide‐binding oligomerization domain‐containing protein 1 (NOD1) and alpha‐protein kinase 1 (ALPK1). H pylori is, however, also highly adept at mitigating inflammation in the host, thereby restricting tissue damage and favoring bacterial persistence. H pylori modulates host immune responses by altering cytokine signaling in epithelial and myeloid cells, which results in increased proliferation of regulatory T cells and downregulation of effector T‐cell responses. H pylori vacuolating cytotoxin A (VacA) has been shown to play an important role in the dampening of immune responses and induction of immune tolerance capable of protecting against asthma. It is also possible to generate protective immune responses by immunization with various H pylori antigens or their epitopes, in combination with an adjuvant, though this for now has only been shown in mouse models. Novel non‐toxic adjuvants, consisting of modified bacterial enterotoxins or nanoparticles, have recently been developed that may not only enhance vaccine efficacy, but also help translate candidate vaccines to the clinic. This review will summarize the main discoveries in the past year regarding host immune responses to H pylori infection, as well as the design of new vaccine approaches against this infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号